SciELO - Scientific Electronic Library Online

 
vol.35 issue2Introduction to supramolecular complex formation in cell signaling and disease author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Biological Research

Print version ISSN 0716-9760

Biol. Res. vol.35 no.2 Santiago  2002

http://dx.doi.org/10.4067/S0716-97602002000200001 

Cellular Signaling

Cellular signaling is an area of intense research that transcends all fields of experimental biology. As such, progress in this domain will continue to have an ever-increasing impact on society in general and health-related issues in particular. This Special Edition of Biological Research provides a glimpse at progress made in a few select areas with emphasis on linking such insights to disease. At the heart of the issue is "Cellular Communication," the ability of a cell to receive, interpret, and respond to cues provided by the environment. In a multi-cellular organism, alterations in this may threaten not only the viability of the cell or cell population involved, but often, if gone unchecked, that of the entire organism. For many years, research has focused on identifying new elements in "signaling cascades", the information super-highways of the cell. These cascades are predominantly depicted as linear pathways, akin in design to those described in earlier decades for cell metabolism, that frequently link changes perceived at the cell surface to responses in internal cellular compartments required to alter cell behavior in an appropriate fashion. Interestingly, some of the individual links in these chains of events are proteins that lack any clearly defined enzymatic activity. Instead, they serve to link consecutive components (adaptors) or bring together multiple proteins from the same or different pathways (scaffolding proteins). In the absence of such proteins, signaling in a pathway (or various pathways) ceases to proceed in an efficient manner. Such observations, in conjunction with the recognition that a considerable amount of sequence information in proteins is dedicated to elements (modules) required for correct cellular localization, rather than activity, underscore the importance of "positional" information for eukaryotic signaling. As a consequence, understanding the mechanisms that govern how multi-protein complexes coalesce during signaling to form not the linear pathways depicted in text books, but rather highly dynamic, integrated signaling networks that link the activity of receptors to, for instance, alterations in gene transcription and how such events may go array to promote disease is rapidly becoming one of the most challenging and exciting areas of biomedical research today. This international symposium brings together 21 researchers from Chile and abroad to discuss such issues. The choice of topics is timely and will be of interest to a broad spectrum of specialist and non-specialist scientists alike. This special edition contains articles written by each researcher presenting data at the symposium that summarize the specific area of interest. Together these should serve to guide the audience through what will hopefully become an intense and highly stimulating discussion of "Supramolecular complex formation in cellular signaling and disease".

LISETTE LEYTON

ANDREW F. G. QUEST

Laboratory of Cellular Communication
ICBM-Faculty of Medicine
University of Chile
Independencia 1027 Santiago, Chile
Phone/FAX +56-2-738-2015

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License