SciELO - Scientific Electronic Library Online

 
vol.53 número4ANTIOXIDANT ACTIVITYIN SOUTHERN BRAZIL HYPERICUM SPECIESKINETIC AND EQUILIBRIUM STUDIES OF CR(III) AND CR(VI) SORPTION FROM AQUEOUS SOLUTION USING ROSA GRUSS AN TEPLITZ (RED ROSE) WASTE BIOMASS índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Journal of the Chilean Chemical Society

versão On-line ISSN 0717-9707

J. Chil. Chem. Soc. v.53 n.4 Concepción dez. 2008

http://dx.doi.org/10.4067/S0717-97072008000400005 

J. Chil. Chem. Soc, 53, N° 4 (2008) págs: 1663-1666

 

IONIC LIQUID-ACCELERATED SYNTHESIS OF SOME N-ALKYL DERIVATWES OF PHTHALIMIDE AND SULFONAMIDES

 

ALIREZA HASANINEJADA* ABDOLKARIM ZAREB*,ALIKHALAFI-NEZHADC, HASHEM SHARGHIC, AHMAD REZA MOOSAVIZAREC, ABOLFATH PARHAMIC

aDepartment of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Irán
bDepartment of Chemistry, Payame Noor University of Bushehr, Bushehr 1698, Irán
cDepartment of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Irán


ABSTRACT

Ionic liquid l-butyl-3-methylimidazolium bromide ([bmim]Br) efficiently accelerates Michael addition of phthalimide and sulfonamides to α,ß-unsaturated esters inthe presence of K2C03 under microwave irradiation (MW) to afford W-alkyl derivatives of these compounds in high yields and short reaction times.

Keywords: Ionic liquid; N-Alkyl phthalimide; N-Alkyl sulfonamide; Michael addition; Microwave.


INTRODUCTION

The exploitation of ionic liquids as solvents in organic transformations has been reported extensively during the past decade.1-5 The most useful properties of ionic liquids are the ability to dissolve a wide range of substances, very low vapor pressure, high thermal stability, and the fact that they can be stored for long times without decomposition. Moreover, it is often possible to achieve reactions in ionic liquids that otherwise proceed with great difficulty, or even not at all.1-3 Together with the substitution of common molecular solvents, non-conventional activation methods have been applied as powerful tools to decrease reaction times and to enhance reactivity, mainly microwave irradiation.6-13

Michael addition reaction has been used in the carbon-carbon,14,15 carbon-oxygen,16 carbon-sulfur,17,18 and carbon-nitrogen bonds formation.19-23 Aza-Michael addition of phthalimide and sulfonamides to a,p-unsaturated esters provides a direct and appealing route toward synthesis of W-alkyl derivatives of these compounds.24-27 For W-alkyl phthalimides some biological activities, such as antipsychotic,28 anti-inflammatory,29,30 hypolipidemic,31 and receptor properties have been reported.32 Furthermore, these compounds are very useful intermedíate in organic synthesis as they can be easily converted to primary amines (Gabriel synthesis).33 W-Alkylated sulfonamides have also various biological activities, including antidepressant, psychostimulant, analgesic, anti-ulcer, anti-emetic anti-inflammatory properties.34"37 Moreover, saccharin as a sulfonamide derivative and its derivatives are very important in medicinal chemistry.36,37 To the best of our knowledge, the preparation of W-alkyl derivatives of phthalimide and sulfonamides by aza-conjugate addition reaction has been scarcely studied in the literature. Moe et al. have used Na in absolute EtOH to achieve Michael addition of phthalimide to a,p-unsaturated aldehydes.24 Cardillo et al. have carried out the reaction of phthalimide salts to a,p-unsaturated imides in the presence of AlMe2Cl.25 For Michael addition of sulfonamides to a,p-unsaturated compounds, A1203,26 and PBu327 has been employed. Furthermore, more recently we have performed this transformation using K2C03/tetrabutylammonium bromide (TBAB). As mentioned, K2C03 accompanied with TBAB has been used previously only for Michael reaction of sulfonamides not phthalimide and saccharin. Moreover, in this report, sulfonamides have been W-alkylated with modérate selectivity in the synthesis of W-alkyl and A^-dialkyl sulfonamides.38 The mentioned methods are also associated with one or more of the following drawbacks: modérate yields, relatively long reaction times and the use of more reactive Michael acceptors. Because of wide range of biological and synthetic applications of W-alkyl phthalimides and sulfonamides, their preparation has received renewed interest processes.

Potassium carbonate (K2C03) is a cheap, commercially available, reusable and green base which has been used frequently in A7-,39"42 C-,43,44 and O-alkylation reactions.45"47

Having the above aspects in mind and also in continuation of our previous studies on aza-Michael reactions,48,49 green organic synthesis,39,48"57 as well as applications of K2C03 in W-alkylation reactions,39 we report here our results on the synthesis of W-alkyl derivatives of phthalimide and sulfonamides via Michael addition of phthalimide and sulfonamides to a,p-unsaturated esters using K2C03 in [bmim]Br under microwave irradiation (Schemes 1 and 2).

RESULTS AND DISCUSSION

We have found previously K2C03 acts as an efficient reagent for highly regioselective W-alkylation of benzotriazole.39 Moreover, this reagent has been frequently applied in alkylation reactions.40"47 These subjects encouraged us to use this reagent for W-alkylation of phthalimide and sulfonamides via Michael reaction. Thus, at first, we used K2C03 to accomplish Michael addition of phthalimide to «-butyl acrylate as a model reaction under microwave conditions in [bmim]Br (Scheme 1). Interestingly, the reaction proceeded efficiently at 300 W of microwave power (max. 130 °C) and the desired Michael adduct Ib was obtained in excellent yield in short reaction time (Table 1). We also studied the influence of different bases to evalúate their capabilities (Table 1). As it is shown in Table 1, the best results were obtained when K2C03 was applied as base. We extended this reaction to benzenesulfonamide as Michael donor that provided compound 2a in 85% yield within 6 min (Scheme 2). Considering the excellent results obtained from K2C03, this base was used for all reactions.

N-alkylation of phthalimide with n-butyl acrylate was also studied in several ionic liquids, such as [bmim]Br, [bmim]Cl, [bmim]BF4 and [bmim]PF6 using K2C03 under microwave irradiation. Higher yields and shorter reaction times were observed in [bmim]Br and [bmim]Cl. However, [bmim]Br was applied as solvent for all reactions, because, the preparation of this ionic liquid was easier in comparison with the others.

In order to determine whether ionic liquid was an essential factor to promote the reaction, the model reaction was carried out in several traditional solvents, and the results are depicted in Table 2. As Table 2 indicates, longer reaction times were required in these classical solvents than those in ionic liquid to achieve the reaction. Furthermore, the yields were not so high as those in ionic liquid. It was clear that the ionic liquids accelerated this reaction.

To establish the efficiency and applicability of this method, we introduced phthalimide and sulfonamides to different a,p-unsaturated esters. The results are summarized in Tables 3, 4 and 5). As Tables 3, 4 and 5 shows, the reactions proceeded efficiently and the desired Michael adducts were obtained in good to excellent yields and short reaction times.

It has been observed that the bulkiness of alkoxy group (-OR) of a,p-unsaturated esters did not affect significantly on the yields and the reaction times (Table 3, Table 4: entries 1 and 2 as well as Table 5). Michael addition of phthalimide and saccharin to substituted a,p-unsaturated esters ethyl methacrylate and ethyl crotonate was not efficient; however, sulfonamides reacted successfully with these esters (Table 4: entries 3 and 4). Lower reaction yield was obtained when 4-methylbenzenesulfonamides instead of benzenesulfonamides was applied in the reaction (Table 4: entry 5). Saccharin afforded lower yields of producís in comparison to the other Michael donors (Table 5). We tried to improve the yields of W-alkyl derivatives of saccharin; however, our attempt was not successful.

Ease of recycling of the reagent is one of the most advantages of our method. For the reaction of phthalimide with «-butyl acrylate no significant loss of the product yield was observed when K2C03/[bmim]Br was used after five times recycling.

CONCLUSIONS

In summary, we have developed an efficient method for Michael addition of phthalimide and sulfonamides to a,p-unsaturated esters. This new strategy for the synthesis of N-Alkyl phthalimides and sulfonamides as biologically interesting compounds has some advantages, including high yield, short reaction time, ease of product isolation, low cast, potential for recycling of ionic liquid as well as reagent and compliance with green chemistry protocols

EXPERIMENTAL

All chemicals were purchased from Merck or Fluka chemical companies. All reactions were carried out using laboratory microwave oven (MW 3000, Landgraf Company, Germany). IR spectra were run on a Shimadzu FTIR-8300 spectrophotometer. The 'H NMR (250 MHz) and 13C NMR (62.5 MHz) were run on a Bruker Avanced DPX-250, FT-NMR spectrometer. Mass spectra were recorded on a Shimadzu GC MS-QP 1000 EX apparatus. Melting points were recorded on a Büchi B-545 apparatus in open capillary tubes.

General procedure for Michael addition of phthalimide and sulfonamides to a,p~unsaturated esters

To a mixture of compounds consisting of phthalimide or sulfonamide (2 mmol), well-ground K2C03 (2 mmol) and a,p-unsaturated ester (2.2 to 3 mmol, Tables 3, 4 and 5) in a microwave vessel was added [bmim]Br (1 g) and mixed carefully. The resulting mixture was irradiated in a microwave oven for the powers, the temperatures and the times reported in Tables 3,4 and 5. Afterward, the reaction mixture was cooled to room temperature and was extracted with Et20 (3x50 niL). The organic extracts were then combined. After removal of the solvent, the crude product was purified by column chromatography on silica gel eluted with EtOAc/«-hexane (1/5 for W-alkyl phthalimides and saccharins and 1/3 for W-alkyl sulfonamides). After isolation of the producís and evaporating of the remainder Et20 in ionic liquid, the ionic liquid containing reagent K2C03 (K2C03/[bmim]Br) was used for next run under identical reaction conditions.

Ethyl 3-phthaIñnido propanoate (1a)

Colorless solid; mp 60-61 °C; IR (KBr): 3051, 2968, 1774, 1716 crn1; 'H NMR (CDC13): 8 1.11 (3H, t, J = 7.1 Hz, CH3), 2.57 (2H, t, J = 7.2 Hz, 0=CCH2), 3.86 (2H, t, J = 7.2 Hz, NCH), 4.06 (2H, q, J = 7.1 Hz, OCH), 7.57-7.70 (4H, m); 13C NMR (CDCLJ: 8 13.8, 32.7, 33.5, 64.3, 122.9 (two carbons), 131.7 (two carbons), 133.8 (two carbons), 167.5 (two carbons), 170.6; MS (m/z): 247 (M+).

Butyl 3-phthalñnido propanoate (1b)

Colorless solid; mp 51-52 °C; IR (KBr): 3069, 2960, 1774, 1716 cm1; 'H NMR (CDC13): 8 0.90 (3H, t, J = 6.8 Hz, CH), 1.28 (2H, m, CH3CH), 1.59 (2H, m, CH3CH2C#2), 2.58 (2H, t, J = 7.2 Hz, 0=CCH), 3.91 (2H, t, J = 7.2 Hz, NCH), 4.08 (2H, t, J = 6.9 Hz, OCH), 7.64-7.76 (4H, m); 13C NMR (CDC13): 8 13.3, 18.5, 30.2, 32.5, 33.4, 64.1, 122.8 (two carbons), 131.7 (two carbons), 133.6 (two carbons), 167.3 (two carbons), 170.3; MS (m/z): 275 (M+).

Hexyl 3-phthalimido propanoate (1e)

Colorless solid; mp 40-41 °C; IR (KBr): 3055, 2970, 1774, 1716 cm1; 'H NMR (CDC13): 8 0.89 (3H, t, J = 6.7 Hz, CH3), 1.29-1.36 (6H, m), 1.60 (2H, m, CH3(CH2)3C#2), 2.59 (2H, t, J = 7.0 Hz, 0=CCH), 3.95 (2H, t, J = 7.0 Hz, NCÍQ, 4.09 (2H, t, J = 6.9 Hz, OCH), 7.68-7.83 (4H, m); 13C NMR (CDC13): 8 13.7, 22.1, 25.4, 28.1, 30.2, 32.4. 33.4, 64.3, 122.7 (two carbons), 132.1 (two carbons), 133.6 (two carbons), 167.2 (two carbons), 170.2; MS (m/ z): 303 (M+).

Benzyl 3-phthalimido propanoate (1d)

Colorless solid; mp 57-59 °C; IR (KBr): 3061, 2958, 1774, 1716 cm1; :H NMR (CDC13): 8 2.59 (2H, t, J = 7.1 Hz, 0=CCH2), 3.86 (2H, t, J = 7.1 Hz, NCH), 4.94 (2H, s, OCH), 7.08-7.17 (5H, m), 7.52 (2H, m), 7.63 (2H, m); 13C NMR (CDC13): 8 32.9, 33.7, 66.6, 122.6 (two carbons), 128.2 (two carbons), 128.5, 129.4 (two carbons), 131.9 (two carbons), 133.9 (two carbons), 135.6, 167.8 (two carbons), 170.6; MS (m/z): 309 (M+).

Phenethyl 3-phthalimido propanoate (1e)

Colorless solid; mp 53-55 °C; IR (KBr): 3052, 2933, 1774, 1716 cm1; :H NMR (CDC13): 8 2.69 (2H, t, J = 7.2 Hz, 0=CCH), 2.87 (2H, t, J = 7.1 Hz, ArCH), 3.93 (2H, t, J = 7.2 Hz, NCÍQ, 4.26 (2H, t, J = 7.1 Hz, OCH), 7.13-7.26 (5H, m), 7.64 (2H, m), 7.77 (2H, m); 13C NMR (CDCLJ: 8 32.8, 33.6, 34.9, 65.2, 123.1 (two carbons), 126.4, 128.3 (two carbons), 128.9 (two carbons),

132.7 (two carbons), 133.9 (two carbons), 137.6, 167.8 (two carbons), 170.7; MS (m/z): 323 (M+).

Cinnamyl 3-phthalimido propanoate (1f)

Palé yellow oil; IR (neat): 3061, 2954, 1774, 1716, 1497 cm1; :H NMR (CDC13): 8 2.68 (2H, t, J = 7.1 Hz, 0=CCH), 3.92 (2H, t, J = 7.1 Hz, NCH), 4.64 (2H, m, OCH), 6.12 (IH, m, ArCU=CH), 6.49 (IH, d, J = 15.8 Hz, ArCH), 7.17-7.26 (5H, m), 7.57 (2H, m), 7.72 (2H, m); 13C NMR (CDCLJ: 8 32.9, 33.7, 65.4, 122.8 (two carbons), 123.2, 126.6 (two carbons), 128.0, 128.5 (two carbons), 131.9 (two carbons), 133.9 (two carbons), 134.4, 136.1, 167.9 (two carbons), 170.6; MS (m/z): 335 (M+).

2-Hydroxy-3-(2-methoxyphenoxy)propyl 3-phthalimido propanoate (1g)

Palé yellow oil; IR (neat): 3480, 3049, 2948, 1770, 1715 cm1; :H NMR (CDC13): 8 2.63 (2H, t, J = 7.0 Hz, 0=CCH), 3.67 (3H, s, CH), 3.80-390 (5H, m), 4.11-4.19 (3H, m), 6.71-6.79 (4H, m), 7.54 (2H, m), 7.68 (2H, m); 13C NMR (CDC13): 8 32.8, 33.6, 55.7, 65.7, 67.9, 70.5, 111.9, 114.2, 120.9, 121.8 (two carbons), 123.2, 131.7 (two carbons), 134.0 (two carbons), 147.8, 149.3, 168.0 (two carbons), 170.8; MS (m/z): 399 (M+).

Phenyl 3-phthalimido propanoate (1h)

Colorless solid; mp 70-72 °C; IR (KBr): 3076, 2970, 1775, 1713 cm1; :H NMR (CDC13): 8 2.74 (2H, t, J = 7.1 Hz, 0=CCH), 3.95 (2H, t, J = 7.1 Hz, NCH), 6.98 (2H, d, J= 8.0 Hz), 7.09 (IH, d, J = 6.9), 7.24 (2H, dd, J = 6.9, 8.0 Hz), 7.61-7.73 (4H, m); 13C NMR (CDCLJ: 8 32.9, 33.5, 121.4 (two carbons), 122.9 (two carbons), 125.7, 129.2 (two carbons), 131.6 (two carbons), 133.9 (two carbons), 150.3, 167.5 (two carbons), 170.3; MS (m/z): 295 (M+).

Butyl 3-(phenylsulfonamido)propanoate (2a)

Colorless oil (Lit.38 oil); IR (neat): 3271, 3048, 2960, 1733, 1447, 1330 cm1; :H NMR (CDCLJ: 8 0.90 (3H, t, J = 6.5 Hz, CH), 1.34 (2H, m, CWfH), 1.56 (2H, m, CU3CU2CH), 2.51 (2H, t, J = 5.0 Hz, 0=CCH), 3.19 (t, 2H, J = 5.0 Hz, 0=CCU2CH), 4.03 (t, 2H, J = 7.0 Hz, OCH), 5.68 (IH, s, NH, exchangeable with D20), 7.48-7.57 (3H, complex, H3-H5 of aromatic ring), 7.79 (2H, m, H2 and H6 of aromatic ring); 13C NMR (CDCLJ: 8 13.5, 18.9, 30.4, 34.1, 38.7, 64.6, 126.8, 129.0 (two carbons), 132.5 (two carbons), 139.9, 172.7; MS (m/z): 285 (M+).

Cinnamyl 3-(phenylsulfonamido)propanoate (2b)

Palé yellow oil (Lit.38 oil); IR (neat): 3287, 3059, 2964, 1732, 1447, 132 9 cm1; :H NMR (CDC13): 8 2.55 (2H, t, J = 5.2 Hz, 0=CCH), 3.19 (2H, t, J = 5.2 Hz, 0=CCUfH), 4.69 (2H, m, OCH2), 5.50 (IH, s, Níf), 6.23 (IH, m, PhCU=CH), 6.63 (IH, d, J= 15.7 Hz, PhC#), 7.29-7.35 (5H, complex, Hj-H, of aromatic ring of alkoxy group), 7.45-7.50 (3H, complex, H3 H5 of aromatic ring of sulfonamide), 7.95 (2H, m, H2 and H6 of aromatic ring of sulfonamide); 13C NMR (CDC13): 8 34.2, 38.8, 65.8, 122.6, 122.9, 126.6 (two carbons), 126.9,128.1,  128.6 (two carbons), 129.0 (two carbons), 132.7 (two carbons), 134.6, 139.9, 171.7; MS (m/z): 345 (M+).

Ethyl 2-methyl-3-(phenylsulfonamido)propanoate (2c)

Palé yellow oil (Lit.38 oil); IR (neat): 3283, 3034, 2966, 1732, 1447, 1328 cm1; :H NMR (CDC13): 8 1.17-1.26 (6H, complex, 2CH), 2.73 (IH, m, 0=CCH), 3.14-3.20 (2H, complex, 0=CCU(CU)CH), 4.12 (2H, q, J = 7.0 Hz, OCH), 5.65 (IH, s, Níf), 7.55-7.64 (3H, complex, H3-H5 of aromatic ring), 7.93 (2H, m, H2 and H6 of aromatic ring); 13C NMR (CDCLJ: 8 14.0, 14.7, 39.6,45.4, 60.8, 126.8, 129.1 (two carbons), 132.5 (two carbons), 139.9, 174.7; MS (m/z): 271 (M+).

Ethyl 3-(phenylsulfonamido)butanoate (2d)

Palé yellow solid; mp 60-62 °C (Lit.38 mp 60-62 °C); IR (KBr): 3285,3044, 2953, 1732, 1447, 1329 cm1; :H NMR (CDC13):S 1.14-1.23 (6H, complex, 2CH), 2.38-2.43 (2H, complex, 0=CCH), 3.68 (IH, m, 0=CCU2CH), 4.04 (2H, q, J = 7.1 Hz, OCH), 5.39 (IH, s, NH), 7.49-7.59 (3H, complex, H3-H5 of aromatic ring), 7.89 (2H, m, H2 and H6 of aromatic ring); 13C NMR (CDCLJ: 8 14.0, 21.0, 40.7, 46.6, 60.7, 126.9, 129.0 (two carbons), 132.5 (two carbons), 140.9, 171.1; MS (m/z): 271 (M+).

Butyl 3-(4-methylphenylsulfonamido)propanoate (2e)

Palé yellow oil (Lit.38 oil); IR (neat): 3286, 3044, 2960, 1732, 1330 cm1; [H NMR (CDC13): 8 0.89 (3H, t, J = 6.8 Hz, CU2(CU)2CH,), 1.33 (2H, m, CH3CH), 1.56 (2H, m, CHfiHfH), 2.40 (3H, s, ArCH), 2.51 (2H, t, J = 5.3 Hz, 0=CCH), 3.16 (2H, t, J = 5.3 Hz, 0=CCUfH), 4.04 (2H, t, J = 7.0 Hz, OCH), 5.76 (IH, s, NH), 7.33 (2H, d, J = 7.9 Hz, H3 and H5 of aromatic ring), 7.72 (2H, d, J = 7.9 Hz, H2 and H6 of aromatic ring); 13C NMR (CDCLJ: 8 13.5,  18.9, 21.3, 30.3, 34.1, 38.7, 64.5, 126.9, 129.6 (two carbons), 135.8 (two carbons), 143.2, 172.7; MS (m/z): 299 (M+).

Butyl 3-(l,l-dioxido-3-oxo-l,2-benzisothiazol-2(3ií)-yl) propanoate (3a)

Yellow oil; IR (neat): 3039, 2938, 1733, 1455, 1333 cm1; :H NMR (CDC13): 8 0.84 (3H, t, J = 7.4 Hz, CH), 1.25 (2H, m, CWfH), 1.51 (2H, m, CU3CU2CH), 2.80 (2H, t, J = 6.8 Hz, 0=CCH), 4.00-4.08 (4H, m, NCff. and OCH), 7.81-7.97(4H, m); 13C NMR (CDCLJ: 8 12.6, 18.0, 29.4, 32.0^

33.6,  63.9, 119.9, 124.2, 126.2, 133.3, 133.8, 136.4, 157.6, 169.3; MS (m/z): 311 (M+).

Hexyl 3-(l,l-dioxido-3-oxo-l,2-benzisothiazol-2(3ií)-yl)propanoate (3b)

Palé yellow oil; IR (neat): 3051, 2931, 1734, 1457, 1339 cm1; :H NMR (CDC13): 8 0.78 (3H, t, J = 7.0 Hz, CH), 1.16-1.25 (6H, m), 1.53 (2H, m, CH3(CH)3CH), 2.81 (2H, t, J = 6.7 Hz, 0=CCH), 3.95-4.04 (4H, m, NCff. and OCH), 7.78-7.92 (4H, m); 13C NMR (CDC13): 8 12.9, 21.4, 24.4, 27.4^ 30.3, 32.0, 33.6, 64.1, 119.9, 124.1, 126.1, 133.4, 133.9, 136.6, 157.6, 169.2; MS (m/z): 339 (M+).

Benzyl 3-(l,l-dioxido-3-oxo-l,2-benzisothiazol-2(3i/)-yl)propanoate(3c)

Palé yellow oil; IR (neat): 3059, 2947, 1733, 1339 cm1; :H NMR (CDCLJ: 8 2.78 (2H, t, J= 6.8 Hz, 0=CCH), 3.99 (2H, t, J= 6.8 Hz, NCÍQ, 5.02 (2H, s, OCH), 7.11-7.21 (5H, m), 7.79-7.94 (4H, m); 13C NMR (CDCLJ: 8 32.6, 33.9, 66.9, 119.6, 123.9, 126.6, 128.0 (two carbons), 128.4, 129.7 (two carbons),133.2,  133.7, 135.8, 136.2, 157.4, 169.1; MS (m/z): 345 (M+).

Cinnamyl 3-(l,l-dioxido-3-oxo-l,2-benzisothiazol-2(3ií)-yl) propanoate (3d)

Yellow oil; IR (neat): 3061, 2954, 1733, 1338 cm1; :H NMR (CDCLJ: 82.85 (2H, t, J = 6.9 Hz, 0=CCH), 4.03 (2H, t, J = 6.9 Hz, NCÍQ, 4.70 (2H, m, OCÍQ, 6.23 (1H, m, ArCH=CH), 6.54 (1H, d, J = 15.7 Hz, ArCÍÍ), 7.19-7.30 (5H, m), 7.76-7.93 (4H, m); 13C NMR (CDC13): 8 32.1, 33.6, 64.5, 119.9, 121.7,

124.2,  125.6, 126.1, 126.7 (two carbons), 127.0, 127.5 (two carbons), 133.3, 133.5, 133.8, 136.8, 157.5, 168.5; MS m/z (%): 307 (M+-S02).

2-Hydroxy-3-(2-methoxyphenoxy)propyl 3-(l,l-dioxido-3-oxo-l,2-benzisothiazol-2(3ií)-yl)propanoate (3e)

Palé yellow oil; IR (neat): 3475, 3059, 2953, 1734, 1339 crn1; 'H NMR (CDC13): 8 2.80 (2H, t, J = 6.8 Hz, 0=CCH2), 3.61 (3H, s, CH), 3.87-3.99 (5H, m), 4.14-4.23 (3H, m), 6.68-6.83 (4H, m), 7.80-7.94 (4H, m);13C NMR (CDCLYS32.5, 33.8, 56.2, 65.5, 67.4, 71.1, 112.2, 114.5, 120.0, 121.1, 122.9, 124.4, 126.0, 133.4, 133.6, 136.2, 147.5, 149.2, 157.8, 168.3; MS (m/z): 371 (M+-S02).

Isopropyl3-(l,l-dioxido-3-oxo-l,2-benzisothiazol-2(3ií)yl)propanoate (3f)

Palé yellow oil; IR (neat): 3033, 2982, 1734, 1457, 1340 cm1; 'H NMR (CDC13): 8 1.18 (6H, d, J = 6.6 Hz, 2CH), 2.77 (2H, t, J = 6.7, 0=CCH2), 4.01 (2H, t, J = 6.7 Hz, NCÍQ, 4.97 (1H, q, J = 6.6, OCH), 7.79-7.95 (4H, m); 13C NMR (CDC13): 8 20.7 (two carbons), 32.2, 33.6, 67.5, 119.9, 124.2, 126.2,133.3,  133.8, 136.6, 157.6, 168.7; MS (m/z): 297 (M+).

Cyclohexyl 3-(l,l-dioxido-3-oxo-l,2-benzisothiazol-2(3ií) yl) pro-panoate (3g)

Colorless solid; mp 62-64 °C; IR (neat): 2938, 1733, 1339 cm1; 'H NMR (CDC13): 8 1.19-1.36 (6H, m), 1.65-1.81 (4H, m), 2.81 (2H, t, J = 6.8 Hz, 0=CCH2), 4.04 (2H, t, J = 6.8 Hz, NCÍQ, 4.76 (1H, m, OCH), 7.81-8.00 (4H, m); 13C NMR (CDC13): 8 23.6 (two carbons), 25.2, 31.4, 33.2, 34.6 (two carbons), 73.3, 120.9, 125.1, 127.1, 134.3, 134.8, 137.5, 158.6, 169.6; MS (m/z): 273 (M+-S02).

ACKNOWLEDGEMENTS

We appreciate Páyame Nour University of Bushehr, Persian Gulf University and Shiraz University research councils for financial support of this work.

REFERENCES

1.     P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, Wiley-VCH, Weinheim, 2003.        [ Links ]

2.     K. Mikami, Oreen Reaction Media in Organic Synthesis, Blackwell Publishing, UK, Oxford, 2005.        [ Links ]

3.     R. D. Rogers, Ionic Liquids As Green Solvents: Progress and Prospects, Publisher: An American Chemical Society Publication, 2005.        [ Links ]

4.     M. M. Khodaei, A. R. Khosropour, S. Ghaderi, J. Irán. Chem. Soc. 3, 69, (2006).        [ Links ]

5.     M. M. Mojtahedi, M. S. Abaee, H. Abbasi, J. Irán. Chem. Soc. 3, 93, (2006).        [ Links ]

6.     A. Loupy, Microwaves in organic synthesis, Wiley-VCH, Weinheim, 2006.        [ Links ]

7.     K. Tanaka, Solvent-free organic synthesis, Wiley-VCH, GmbH and KGaA, Weinheim, 2004.        [ Links ]

8.     R. S. Varma, Advances in green chemistry: chemical synthesis using microwave irradiation, Astra Zeneca Research Foundation, Kavitha Printers, Bangalore, India, 2002.        [ Links ]

9.     A. R. Khosropour, K. Esmaeilpoor, A. Moradie, J. Irán. Chem. Soc. 3, 81, (2006).        [ Links ]

10.   M. Mamaghani, K. Tabatabaeian, M. Mirzaeinejad, M. Nikpassand, J. han. Chem. Soc. 3, 89, (2006).        [ Links ]

11.   K. G. Desai, J. P. Raval, K. R. Desai, J. Irán. Chem. Soc. 3, 233, (2006).        [ Links ]

12.   S. Balalaie, M. Soleiman-Beigi, F. Rominger, J. Irán. Chem. Soc. 2, 319, (2005).        [ Links ]

13.   H. Loghmani-Khouzani, M.M. Sadeghi, R. Ranjbar-Karimi, J. Irán. Chem. Soc. 2, 330, (2005).        [ Links ]

14.   P. Kotrusz, S. loma, Arkivoc v, 100, (2006).        [ Links ]

15.   J. Comelles, M. Moreno-Mañas, A. Vallribera,Arkivoc ix, 207, (2005).        [ Links ]

16.   Y. Hayashi, K. Nishimura, Chem. Lett. 296, (2002).        [ Links ]

17.   B. Movassagh, P. Shaygan, Arkivoc xii, 130, (2006).        [ Links ]

18.   H. Firouzabadi, N. Iranpoor, A. A. Jafari, Synlett 299, (2005).        [ Links ]

19.   H. Firouzabadi, N. Iranpoor, M. Jafarpour, A. Ghaderi, J. Mol. Catal. A.: Chemical 252, 150,(2006).        [ Links ]

20.   H. Firouzabadi, N. Iranpoor, F. Nowrouzi, Chem. Commun. 789, (2005).        [ Links ]

21.   H. Firouzabadi, N. Iranpoor, A. A. Jafari, Adv. Synth. Cat. 347, 655, (2005).        [ Links ]

22.   B. Tamami, A. Fadavi, M. Tamami, Irán. Polym. J. 15, 799, (2006); Chem. Abstr. 149820, (2007).        [ Links ]

23.   M. R. Saidi, R. S. Brown, F. Rajabi, J. Irán. Chem. Soc. 2, 300, (2005).        [ Links ]

24.   O. A. Moe, D. T. Warner, J. Am. Chem. Soc. 71, 1251, (1949).        [ Links ]

25.   G. Cardillo, A. D. Simone, L. Gentilucci, P. Sabatino, C. Tomasini, Tetrahedron Lett. 35, 5051, (1994).        [ Links ]

26.   A. Reitz, M. Verlander, M. Goodman, Tetrahedron Lett. 23, 751, (1982).        [ Links ]

27.   C. Gimbert, M. Moreno-Mañas, E. Pérez, A. Vallribera, Tetrahedron 63, 8305, (2007).        [ Links ]

28.   M. H. Norman, D. J. Minick, G. C. Rigdon, J. Med. Chem. 39, 149, (1996).        [ Links ]

29.   L. M. Lima, P. Castro, A. L. Machado, C. A. M. Fraga, C. Lugnier, V. L. G. de Moraesc, E. J. Barreiroa, Bioorg. Med. Chem. 10, 3067, (2002).        [ Links ]

30.   X. Collin, J. M. Robert, G. Wielgosz, G. Le Baut, N. Grimaud, J. Y. Petit, Eur. J. Med. Chem. 36, 639, (2001).        [ Links ]

31.   J. M. Chapman, G. H. Cocolas, I. H. Hall, J. Med. Chem. 26, 243, (1983).        [ Links ]

32.   A. Raasch, O. Scharfestein, C. Trankle, U. Holzgrabe, K. Mohr, J. Med. Chem. 45, 3809, (2002).        [ Links ]

33.   M. B. Smith, J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structures, 4"1 ed., John Wiley & sons, New York, 2001.        [ Links ]

34.   M. J. O'neil, A. Smith, T. E. Heckelman, F. Dudavari, Merck Índex: an encyclopedia of chemicals, drugs, and biologicals, 13"1 ed., Merck: Whitehouse Station, NG, 2001.        [ Links ]

35.   L. Soler, V. Cerrada, M. P. Matía, J. L. Novella, J. Alvarez-Builla, Arkivoc iv, 312, (2007).        [ Links ]

36.   O. Güzel, A. Salman, Bioorg. Med. Chem. 14, 7804, (2006).        [ Links ]

37.   J. C. Filho, A. O. Santini, A. L. M. Nasser, Food chemistry 83, 297, (2003).        [ Links ]

38.   G. H. Imanzadeha, A. Zare, A. Khalafi-Nezhad, A. Hasaninejad, A. R. Moosavi Zare, A. Parhami, J. Irán. Chem. Soc. 4, 467, (2007).        [ Links ]

39.   A. Khalafi-Nezhad, A. Zare, A. Parhami, M. N. Soltani Rad, G. R. Nejabat, J. Irán. Chem. Soc. 4, 271, (2007).        [ Links ]

40.   D. Bogdal, Molecules, 333, (1999).        [ Links ]

41.   D. Bogdal, J. Pielichowski, A. Boron, Synlett 873, (1996).        [ Links ]

42.   Y.-L. Chen, H.-M. Hung, C.-M. Lu, K.-C. Li, C.-C Tzeng, Bioorg. Med. Chem. 12, 6539, (2004).        [ Links ]

43.   C. Rabeyrin, C. Nguefack, D. Sinou, Tetrahedron Lett. 41, 7461, (2000).        [ Links ]

44.   B. Lygo, J. Crosby, J. A. Peterson, Tetrahedron Lett. 40, 8671, (1999).        [ Links ]

45.   B. K. Pchelka, A. Loupy, A. Petit, Tetrahedron 62, 10968, (2006).        [ Links ]

46.   A. Loupy, P. Pigeon, M. Ramdani, Tetrahedron 52, 6705, (1996).        [ Links ]

47.   D. Bogdal, J. Pielichowski, A. Boron, Synth. Commun. 28, 3029, (1998).        [ Links ]

48.   A. Zare, A. Hasaninejad, A. Khalafi-Nezhad, A. Parhami, A. R. Moosavi Zare, J. Irán Chem. Soc. 5, 100, (2008).        [ Links ]

49.   A. Khalafi-Nezhad, A. Zarea, M. N. Soltani Rad, B. Mokhtari, A. Parhami, Synthesis 419, (2005).        [ Links ]

50.   A. Hasaninejad, H. Sharghi, Phosphorus, Sulfur, and Silicon 182, 873, (2007).        [ Links ]

51.   A. Hasaninejad, A. Zare, J. Sulfur Chem. 28, 357, (2007).        [ Links ]

52.   A. Hasaninejad, A. Zare, H. Sharghi, M. Shekouhy, R. Khalifeh, A. Salimi Beni, A. R. Moosavi Zare, Can. J. Chem. 85, 416, (2007).        [ Links ]

53.   A. Khalafi-Nezhad, A. Zare, A. Parhami, M. N. Soltani Rad, G. R. Nejabat, Phosphorus, Sulfur, and Silicon 182, 657, (2007).        [ Links ]

54.   A. Hasaninejad, A. Zare, H. Sharghi, A. Khalafi-Nezhad, A. Parhami, A. R. Moosavi Zare, Phosphorus, Sulfur, and Silicon, Inpress.        [ Links ]

55.   A. Hasaninejad, A. Parhami, A Zare, A. Khalafi-Nezhad, A. Nasrolahi Shirazi, A. R. Moosavi Zare, PolishJ. Chem. 82, 565, (2008).        [ Links ]

56.   A. Khalafi-Nezhad, A. Zare, A. Parhami, M. N. Soltani Rad, G. R. Nejabat, Synth. Commun. 36, 3549, (2006).        [ Links ]

57.   A. Khalafi-Nezhad, A. Parhami, M. N. Soltani Rad, A. Zarea, Tetrahedron Lett. 46, 6879, (2005).        [ Links ]

 

(Received: October 3, 2007 - Accepted: July 14, 2008)

* e-mail: abdolkarimzare@yahoo.com

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons