SciELO - Scientific Electronic Library Online

 
vol.31 número1Modelo matemático para estimar curvas de intensidad, duración y frecuencia de lluvias extremas en Tunja, ColombiaEvaluación de técnicas de pretratamiento en buchón de agua (Eichhornia crassipes) para la producción de bioetanol índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Información tecnológica

versão On-line ISSN 0718-0764

Inf. tecnol. vol.31 no.1 La Serena fev. 2020

http://dx.doi.org/10.4067/S0718-07642020000100207 

ARTICULOS

Modelado de un problema de ruteo de vehículos con múltiples depósitos, ventanas de tiempo y flota heterogénea de un servicio de mensajería

Modeling a vehicle routing problem with multiple depots, time windows and heterogeneous fleet of a courier service

William C. Rodríguez-Vásquez1 

1() Universitaria Agustiniana, Facultad de Ingeniería, Bogotá-Colombia. (e-mail: william.rodriguez@uniagustiniana.edu.co)

Resumen:

El presente artículo tiene como objetivo presentar el modelado de un servicio de mensajería, llamado transporte de canje bancario, como un problema de ruteo de vehículos que considera restricciones de ventanas de tiempo, capacidad, flota heterogénea y múltiples depósitos. Las investigaciones sobre problemas de ruteo han tenido un crecimiento exponencial en los últimos años. Sin embargo, son escasos los trabajos que consideran múltiples restricciones, como las presentes en el caso de estudio que inspiró esta investigación. Para solucionar el problema se desarrolló un algoritmo híbrido entre la optimización por colonia de hormigas y el algoritmo de barrido. Dentro de los resultados obtenidos está una reducción de 4.5% de recursos requeridos. Finalmente, se concluyó que el desarrollo de nuevos modelos del Problema de Ruteo de Vehículos (VRP) que consideran múltiples restricciones simultáneas han permitido modelar y solucionar los problemas reales que afrontan las empresas.

Palabras clave: servicios de mensajería; problema de ruteo de vehículos; ventanas de tiempo; algoritmo de barrido; optimización por colonia de hormigas

Abstract:

The objective of this article is to present the modeling of a courier service, called bank exchange, as a vehicle routing problem that considers restrictions of time windows, capacity, heterogeneous fleet, and multiple depots. Researches about vehicle routing problems have been growing exponentially in the last few years, nevertheless, only few of them consider multiple restrictions as the ones present in the case study that inspired this research. To solve the problem a hybrid algorithm between the ant colony optimization and the sweep algorithm was created. Among the results obtained there is a 4.5% reduction in required resources. Finally, it was concluded that the development of new Vehicle Routing Problem models (VRP) that consider multiple simultaneous constraints allows modeling and solving the real problems faced by companies.

Keywords: courier service; vehicle routing problem; time windows; sweep algorithm; ant colony optimization

INTRODUCCIÓN

Las empresas de mensajería ofrecen el servicio de transporte de canje bancario, el cual consiste en el transporte programado de documentos empacados en unidades de carga selladas. Los documentos son recogidos y posteriormente entregados en intervalos de tiempo pactados con los clientes. Dichos servicios de mensajería se pueden modelar mediante un problema de ruteo de vehículos, mejor conocido por sus siglas en inglés Vehicle Routing Problem (VRP). Estos VRP tienen diferentes variantes que se generan por las restricciones consideradas (Farahani et al., 2011). Dentro de la optimización combinatoria el VRP ha sido objeto de bastantes investigaciones (Golden et al., 2008). Algunas de las más recientes han podido concluir que el crecimiento de las investigaciones sobre VRP ha sido exponencial y que, además, es más frecuente encontrar estudios que tratan de incluir todas las restricciones de los problemas reales (Braekers et al., 2016; Eksioglu et al., 2009).Particularmente en los servicios de mensajería, las restricciones que usualmente se toman en consideración son las de capacidad y las ventanas de tiempo, también que se utilizan una, dos o máximo tres restricciones simultáneas (López-Santana et al., 2018). Para solucionar las diferentes variantes del VRP, existen tres tipos de métodos, los cuales se describen en la Tabla 1. Adicionalmente, se mencionan algunos ejemplos de sus algoritmos.

Tabla 1: Algoritmos de solución del VRP 

Aunque no son comunes las aplicaciones a situaciones reales de los modelos de VRP se encontraron dos ejemplos interesantes recientes en la base de datos Scielo, el primero es un VRP multi-objetivo (Suarez-Chilma y otros, 2018) y el segundo VRP periódico (Campo-Zúñiga y Mendoza-Mendoza, 2018). Con respecto al caso de estudio, en la literatura los VRP similares son escasos, por ejemplo, al consultar la revisión realizada por Montoya-Torres y otros (2015), de 147 publicaciones investigadas entre 1984 y 2014 sobre VRP con múltiples depósitos, tan solo 8 consideraban restricciones de ventanas de tiempo, capacidad, flota heterogénea y múltiples depósitos, es decir, apenas un 5,4%. De forma similar se realizó una revisión en Scopus, priorizando los más recientes y aquellos que consideraron tres o cuatro de las restricciones que tiene el servicio de transporte de canje y correo del caso de estudio.

Xu et al. (2012) resolvieron un VRP con las mismas cuatro restricciones, mediante un algoritmo de búsqueda de vecindad variable modificado (modified variable neighborhood search). El algoritmo utiliza un operador híbrido de inserción e intercambio para lograr el proceso de perturbación, en el cual se adopta la estrategia de mejoras, logrando un mejor equilibrio en la calidad de la solución y el tiempo de ejecución. Otro trabajo muy similar, además de las cuatro restricciones, con el objetivo de minimizar el costo total asumiendo que el tiempo de viaje entre ubicaciones depende de la hora de salida. El problema fue solucionado mediante un procedimiento heurístico constructivo (Afshar-Nadjafi y Afshar-Nadjafi, 2017). El último trabajo encontrado que consideró las cuatro restricciones, aborda un problema logístico en el complejo hospitalario de Tours (Francia). Se trata de un VRP de dos niveles, el primero se refiere a los vehículos que atienden a varias unidades hospitalarias y el segundo al problema de enviar a los empleados entre edificios, ambos niveles están interconectados. Todo el problema fue resuelto con un algoritmo genético y una búsqueda tabú (Kergosien et al., 2013).

Para complementar la búsqueda también se incluyeron otros artículos con tres restricciones en común con el VRP del caso de estudio. El primero de ellos es un VRP que considera simultáneamente flota heterogenea de vehículos, cargas mixtas de retorno y ventanas de tiempo. Para resolverlo fue propuesto un sistema de colonias de hormigas basado en etiquetas de atributos múltiples. El algoritmo propuesto fue probado en un servicio de transporte postal de una oficina de correos de China en Guangzhou (Wu et al., 2016). Pisinger y Ropke (2007) presentaron una heurística unificada para resolver cinco variaciones del VRP, convirtiendo todos los problemas en un modelo de recogida y entrega, el cual se resuelve con una heuristica llamada “El gran marco de búsqueda local adaptativa” (The adaptive large neighborhood search framework, ALNS Framework), la cual a partir de una solución factible, comienza por destruirla y luego la repara, así sucesivamente hasta encontrar el criterio de parada. El último artículo seleccionado propone un procedimiento de perturbación que mejoran significativamente el rendimiento de la búsqueda local iterativa (ILS) para solucionar un problema logístico presente en una empresa australiana, que consitia en un VRP que consideró una flota heterogénea con capacidad limitada, ventanas de tiempo y restricciones de carga tridimensional (Turky et al., 2017). A partir de búsqueda realizada para encontrar los artículos se puede concluir que son escasas las investigaciones sobre VRP que consideren simultáneamente múltiples restricciones, especialmente cuatro o más restricciones. Por otro lado, en la Tabla 2 se presenta un análisis de frecuencia comparando las investigaciones de los seis autores seleccionados, con dicha tabla se evidencia que no hay tendencia marcada para solucionar este tipo VRP con múltiples restricciones, ya que todos utilizaron algoritmos diferentes: heurísticas, metaheurísticas o combinaciones entre ellas.

Tabla 2: Frecuencia algoritmos de solución para VRP con múltiples restricciones. (1) Xu et al., 2012; (2) Afshar-Nadjafi y Afshar-Nadjafi, 2017; (3) Kergosien et al., 2013; (4) Wu et al., 2016; (5) Pisinger y Ropke, 2007; (6) Turky et al., 2017

El objetivo es modelar el transporte de canje bancario como un VRP considerando cuatro restricciones. La primera son las ventanas de tiempo, las cuales son intervalos de tiempo en los cuales los clientes pueden ser visitados (Toth y Vigo, 2002). La segunda, es la restricción de capacidad en los vehículos, medida normalmente como capacidad de carga. La tercera es la flota heterogénea, ya que hay dos tipos de vehículos con diferentes capacidades y costos (Golden et al., 2008). Finalmente, la cuarta son múltiples depósitos, cada uno con una flota de vehículos asignados (Contardo y Martinelli, 2014). En resumen, el artículo propone un algoritmo híbrido entre el algoritmo de barrido y la optimización por colonia de hormigas para resolver VRP con cuatro restricciones de un caso estudio en una empresa de mensajería en Colombia. En la siguiente sección se describe el modelo matemático, luego se exponen los resultados del caso de estudio y son presentadas las conclusiones.

MODELO MATEMÁTICO

Se considera un conjunto de vehículos heterogéneos T = {T11, …, Tlk, …, TLK} correspondiente al conjunto de vehículos k del tipo l, con diferentes capacidades Ql k, y diferentes costos de viaje Cl k. Además, los vehículos pertenecen a uno de los múltiples depósitos disponibles Vd = {1, 2, …, DP}. El conjunto de clientes Vc = {1, 2, …, N} geográficamente distribuidos deben ser visitados una única vez por un solo vehículo dentro de una ventana de tiempo específica [ej, lj]. Si el vehículo llega a una de los clientes antes del comienzo de la ventana de tiempo, tiene que esperar. El VRP estudiado requiere encontrar el conjunto de recorridos factibles para minimizar el costo total de operación. Una ruta factible de un vehículo es un viaje que comienza en un depósito y finaliza en el mismo depósito o en un depósito diferente, visitando a algunos clientes que tienen ventanas de tiempo. El problema se puede definir como un grafo completo dirigido G = {V, A} en donde V = Vc U Vd es el conjunto de vértices y A = {(i,j): i,j ϵ V, i≠j} es el conjunto de arcos. Es importante aclarar que no hay arco entre los depósitos. Cada arco (i,j) tiene un valor no negativo asociado tij el cual representa el tiempo de viaje desde i hasta j.

Modelo de programación lineal entera

En esta sección se presenta el modelo programación entera para el problema estudiado. En la Tabla 3 están definidas las variables utilizados en el modelo matemático que representa el caso de estudio. Las definiciones utilizaron como base los artículos de los autores (Xu et al., 2012), (de Oliveira et al., 2016) y (López-Santana et al., 2018).

Tabla 3: Conjuntos, variables y parámetros del modelo 

La función objetivo (1) pretende optimizar el costo de visitar todos los clientes incluyendo los costos variables asociados tiempo utilizado por los vehículos y el costo fijo de disponer de los mismos. La restricción (2) asigna a cada cliente exactamente una ruta de vehículo, es el conjunto de grafos completos que parten de i y llegan a j. Las restricciones (3) y (4) limitan el número de rutas por vehículo a una, y caracterizan el flujo que debe seguir la flota. La primera hace referencia al número de veces que un vehículo sale del depósito y la segunda, al número de veces que llega. La restricción (5) asegura que a cada cliente solo llegue un vehículo y el mismo salga de él. Esta restricción permite que en el modelo no se formen ciclos. La restricción (6) asegura que el vehículo k no pueda comenzar el servicio, si la suma del tiempo de viaje de i a j, la duración del servicio en i y el tiempo total acumulado al inicio del servicio en i (wl ik) es mayor que la ventana de tiempo de j o del cliente siguiente.

Para un vehículo k del tipo l dado, las restricción (7) y (8) hacen que wl ik = 0 cada vez que el cliente i no es visitado por el vehículo k. Igualmente, garantizan que el inicio de servicio en el cliente i se lleve a cabo dentro de la ventana de tiempo correspondiente. La restricción (9) hace que cada cliente sea servido dentro del intervalo asociado a los nodos de llegada y de salida (depósitos). La restricción (10) indica que la suma de las demandas de los clientes de una ruta no debe exceder la capacidad del vehículo k del tipo l. El costo fijo de los vehículos se controla mediante la restricción (11). La restricción (12) indica la naturaleza binaria de las variables. La restricción (13) es de la de no negatividad para la variable continua. El modelo matemático fue puesto en marcha en el software FICO® Xpress, para validar su consistencia. Se encontraron soluciones factibles para menos de 12 clientes.

Descripción del algoritmo

Tomando en cuenta los resultados de la revisión de algoritmos de solución propuestos por otros autores, se decidió en primer lugar poner en funcionamiento una versión ajustada del algoritmo que se propuso en (López-Santana et al., 2018). Dicho algoritmo combinaba el algoritmo de centro de gravedad con la optimización por colonia de hormigas, sin embargo, la solución encontrada estimó más recursos que los utilizados en la situación real. Revisando minuciosamente los datos del servicio de trasporte bancario en la empresa de mensajería, se evidenció que las ventanas de tiempo más tempranas se encontraban en los extremos de la ciudad y las ventanas de tiempo más tardías estaban en el centro de la ciudad. Es decir, los cercanos el destino de los paquetes. Por esta característica del problema se propuso combinar el algoritmo de barrido con la optimización por colonia de hormigas. A continuación, se describirán por separado cada uno de los algoritmos y después el algoritmo hibrido propuesto.

Algoritmo de barrido

Es una heurística que forma los grupos factibles o clústeres girando una semirrecta centrada en el depósito, para el caso del transporte de canje, el centro es el destino de entrega de los paquetes. De forma simple este método consiste en que cada cliente i está representado por sus coordenadas polares (ρi, θi), donde θi es el ángulo y ρi, es la longitud de la semirrecta. Asignar un valor θi = 0 a un cliente arbitrario i* y calcular los ángulos restantes desde (0, i*). Clasificar los vértices en orden creciente de su θi (Toth y Vigo, 2002).

Optimización por colonia de hormigas para el TSPTW (ACO-TSPTW)

Con el fin de obtener las rutas de vehículo para cada uno de los clústeres generados en el algoritmo de barrido, se resuelve un problema de agente viajero (TSP). Para el caso de estudio como los clientes tienen ventanas de tiempo asociadas, se resuelve un problema de agente viajero con ventanas de tiempo (Travelling Sales Problem with Time Windows, TSPTW). Para solucionar estos TSPTW se utilizó la metaheurística de optimización por colonia de hormigas. La descripción detallada con seudocódigo y ecuaciones del algoritmo de ACO-TSPTW que se utilizó se encuentra en el trabajo que fue desarrollado con otros investigadores para resolver un VRP de otro servicio de mensajería (López-Santana et al., 2018).

Algoritmo hibrido propuesto

Con el fin de poder resolver el VRP que considera las restricciones de capacidad, ventanas de tiempo, flota heterogénea y múltiples depósitos, se desarrolló un algoritmo hibrido entre el algoritmo de ACO-TSPTW y una versión modificada del algoritmo de barrido. En la Fig. 1 se resumen los pasos del algoritmo propuesto.

Fig. 1: Algoritmo híbrido propuesto 

El algoritmo híbrido es una heurística de dos fases, primero agrupa y luego diseña las rutas. Sin embargo, realiza simultáneamente ambas fases, ya que uno de los criterios para asignar un cliente a un clúster es la evaluación de factibilidad de ruta mediante ACO-TSPTW, de esta forma siempre se respetan las ventanas de tiempo. Por otra parte, para respetar la restricción de capacidad se verifica la capacidad disponible del vehículo a medida que evalúa si se puede agregar un nuevo cliente al clúster. Con respecto a la flota heterogénea, fueron separados en tres pasos la creación de los clústeres. Primero se asignan los clientes que tienen paquetes pesados, más de 5 kg, a los vehículos con mayor capacidad, después se complementan sus rutas con clientes de paquetes livianos, menos de 5 kg y que sean factibles de ser incluidos en las rutas del paso anterior, al final se generan los clústeres para los clientes restantes con paquetes livianos. En el último paso, son asignadas todas las rutas que fueron creadas previamente de acuerdo al primer cliente de cada una, la ruta se asigna al depósito más cercano de dicho cliente.

Para la validación y parametrización del algoritmo ACO-TSPTW, se seleccionó primero una muestra de 10 clientes y 2 depósitos, después se obtuvo la solución óptima del problema de ruteo de vehículos que considera restricciones de ventanas de tiempo, capacidad, flota heterogénea y múltiples depósitos mediante el modelo matemático que fue programado en FICO® Xpress, finalmente a través de experimentación, a los parámetros ACO-TSPTW se les asignaron valores diferentes y el problema se resolvió repetidamente, cambiando el valor de un parámetro cada vez. Los parámetros de ACOTSPTW que incluyen el número de hormigas (m), el parámetro de relación de distribución q0, los parámetros de evaporación de la feromona θ y ω, los parámetros de importancia relativa β y γ, y los parámetros de pendiente δ y λ. La combinación óptima de valores de parámetros se especificó como aquellos valores asociados obtuvieron la solución óptima en el menor tiempo de procesamiento. Mientras el modelo matemático llego al optimo en 2.38 segundos, el modelo hibrido llego al optimo en 1.72 segundos. Se determinó que los parámetros son m = 5, q0 = 0.90, θ = ω = 0.1, β = 0.1, γ = 0.5 y δ = λ = 0.01.

RESULTADOS

En esta sección, son presentados los resultados del algoritmo híbrido propuesto para el VRP del servicio de transporte de canje bancario que pertenece a un caso del mundo real. Todas las pruebas en este trabajo se realizaron utilizando Microsoft Excel 2016 en una máquina de Windows 10 de 64 bits, con un procesador AMD A9-9410 RADEOM R5, 5 COMPUTE CORES 2C+3G 2,9 GHz y 4 GB de RAM.

El caso de estudio es una empresa de mensajería en Bogotá-Colombia, la cual tiene para el servicio de transporte de canje bancario una flota de 8 vehículos para paquetes pesados, con capacidad de 1 tonelada, y 80 operadores con motocicletas para paquetes livianos, con capacidad de 25 kg. La empresa tiene 3 depósitos, desde los cuales salen las rutas que visitan más de 1.000 clientes en un día de operación. Para la muestra, el 24 de julio de 2018, la empresa solicitó una base de datos con las rutas actuales que estaban en su sistema. En la muestra recibida, había 545 clientes que son visitados en la jornada de la tarde.

El primer resultado obtenido es la reducción en la cantidad de vehículos utilizados, ya que se en la operación real se utilizan 88 rutas, mientras el algoritmo híbrido generó 84 rutas para visitar los mismos 545 clientes, es decir, una reducción del 4.5% en los costos fijos asociados a los 4 vehículos que ya no se requieren. El algoritmo requirió de solo 3,5 minutos para encontrar las rutas de 545 clientes. El segundo resultado obtenido para la empresa, es flexibilidad de la operación, ya que, ante las reducciones de la demanda, es decir, clientes que ya no requieren recolección de su canje por el cierre de la sucursal, los clientes restantes seguían asignados a los mismos vehículos y el orden de visita permanecía igual, incrementando gradualmente los costos fijos absorbidos por cada ruta.

CONCLUSIONES

De acuerdo a los resultados de este estudio, y de su análisis se pueden extraer las siguiente tres conclusiones principales: 1) el desarrollo de nuevos modelos de VRP que consideran múltiples restricciones simultáneas han permitido modelar y solucionar los problemas reales que afrontan las empresas; 2) la combinación de heurísticas y metaheurísticas, como la integración propuesta entre el algoritmo de barrido y ACO-TSPTW, permite encontrar buenas soluciones en tiempos muy cortos para problemas tan complejos como los VRP de múltiples restricciones; y 3) el modelo propuesto y su algoritmo de solución permiten optimizar los costos requeridos para visitar 545 clientes en tan solo 3,5 minutos.

AGRADECIMIENTOS

En nombre de la Universitaria Agustiniana agradezco al programa de socio académico (Academic partner program, APP), permitirnos utilizar FICO® Xpress para el desarrollo del proyecto de investigación.

REFERENCIAS

Afshar-Nadjafi, B., y A. Afshar-Nadjafi, A Constructive Heuristic for Time-Dependent Multi-Depot Vehicle Routing Problem with Time-Windows and heterogeneous fleet, doi: 10.1016/j.jksues.2014.04.007, Journal of King Saud University - Engineering Sciences, 29(1), 29-34, (2017) [ Links ]

Braekers, K., K. Ramaekers. e I. Van Nieuwenhuyse, The Vehicle Routing Problem: State of the Art Classification and Review, doi: 10.1016/j.cie.2015.12.007, Computers y Industrial Engineering, 99, 300-313, (2016) [ Links ]

Campo-Zúñiga, B., y A. Mendoza-Mendoza, Propuesta de un modelo de ruteo de vehículos abierto en una institución prestadora de servicios de salud, doi: 10.18041/1900-3803/entramado.2.4761, Entramado, 14(2), 288-298, (2018) [ Links ]

Contardo, C., y R. Martinelli, A New Exact Algorithm for the Multi-Depot Vehicle Routing Problem Under Capacity and Route Length Constraints, doi: 10.1016/j.disopt.2014.03.001, Discrete Optimization, 12, 129-146, (2014) [ Links ]

de Oliveira, F. B. y otros cuatro autores, A Cooperative Coevolutionary Algorithm for the Multi-Depot Vehicle Routing Problem, doi: 10.1016/j.eswa.2015.08.030, Expert Systems with Applications, 43, 117-130, (2016) [ Links ]

Ding, Q., X. Hu, L. Sun e Y. Wang, An Improved Ant Colony Optimization and its Application to Vehicle Routing Problem with Time Windows, doi: 10.1016/j.neucom.2011.09.040, Neurocomputing, 98, 101-107, (2012) [ Links ]

Eksioglu, B., A. Vural, y A. Reisman, The Vehicle Routing Problem: A Taxonomic Review, doi: 10.1016/j.cie.2009.05.009 Computers y Industrial Engineering, 57(4), 1472-1483, (2009) [ Links ]

Farahani, R. Z., S. Rezapour y L. Kardar, Logistics Operations and Management: Concepts and Models, doi: 10.1016/c2010-0-67008-8, Elsevier, (2011) [ Links ]

Glover, F. W., y G. A. Kochenberger, Handbook of Metaheuristics, doi:10.1007/b101874, G. Fred y Gary A. Kochenberger Eds., Vol. 57, Book, Springer US, (2003) [ Links ]

Golden, B. L., S. Raghavan, y E. A. Wasil, The Vehicle Routing Problem: Latest Advances and New Challenges, doi:10.1007/978-0-387-77778-8, Vol. 43, Springer Science y Business Media, (2008) [ Links ]

Jia, H., Y. Li, B. Dong, y H. Ya, An Improved Tabu Search Approach to Vehicle Routing Problem, doi: 10.1016/j.sbspro.2013.08.138, Procedia - Social and Behavioral Sciences, 96, 1208-1217, (2013) [ Links ]

Kergosien, Y., C. Lenté, J.-C. Billaut, y S. Perrin, Metaheuristic Algorithms for Solving Two Interconnected Vehicle Routing Problems in a Hospital Complex, doi: 10.1016/j.cor.2013.01.009, Computers and Operations Research, 40(10), 2508-2518, (2013) [ Links ]

Khouadjia, M. R. y otros cuatro autores, A Comparative Study between Dynamic Adapted PSO and VNS for the Vehicle Routing Problem with Dynamic Requests, doi: 10.1016/j.asoc.2011.10.023, Applied Soft Computing, 12(4), 1426-1439, (2012) [ Links ]

Laporte, G., e Y. Nobert, Exact Algorithms for the Vehicle Routing Problem, North-Holland Mathematics Studies, 132, 147-184, (1987) [ Links ]

López-Santana, E., W. C. Rodríguez-Vásquez y G. Méndez-Giraldo, A Hybrid Expert System, Clustering and Ant Colony Optimization Approach for Scheduling and Routing Problem in Courier Services, doi: 10.5267/j.ijiec.2017.8.001, International Journal of Industrial Engineering Computations, 9(3), 369-396, (2018) [ Links ]

Michallet, J. y otros cuatro autores, Multi-start Iterated Local Search for the Periodic Vehicle Routing Problem with Time Windows and Time Spread Constraints on Services, doi: 10.1016/j.cor.2013.07.025, Computers y Operations Research, 41, 196-207, (2014) [ Links ]

Montoya-Torres, J. R., J. L. Franco, S. N. Isaza, H. F. Jiménez y N. A. Herazo-Padilla, Literature review on the vehicle routing problem with multiple depots, doi: 10.1016/j.cie.2014.10.029, Computers & Industrial Engineering, 79, 115-129, (2015) [ Links ]

Pereira, F. B. y J. Tavares, Bio-inspired Algorithms for the Vehicle Routing Problem, doi:10.1007/978, Springer-Verlag Berlin Heidelberg, (2009) [ Links ]

Pisinger, D. y S. Ropke, A General Heuristic for Vehicle Routing Problems, doi: 10.1016/j.cor.2005.09.012, Computers and Operations Research, 34(8), 2403-2435, (2007) [ Links ]

Suarez-Chilma, V. F., W. A. Sarache e Y. J. Costa, Una Solución al Enrutamiento de Vehículos en Ciudades Montañosas Considerando Aspectos Ambientales y Económicos, doi: 10.4067/S0718-07642018000300003, Información tecnológica, 29(3), 3-14, (2018) [ Links ]

Toth, P. y D. Vigo, The Vehicle Routing Problem, doi:10.1137/1.9780898718515, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, SIAM, Philadelphia, PA., (2002) [ Links ]

Turky, A., I. Moser, y A. Aleti, An Iterated Local Search with Guided Perturbation for the Heterogeneous Fleet Vehicle Routing Problem with Time Windows and Three-Dimensional Loading Constraints, In M. Wagner, X. Li, y T. Hendtlass (Eds.), Artificial Life and Computational Intelligence (pp. 279-290), Cham: Springer International Publishing, (2017) [ Links ]

Wu, W., Y. Tian y T. Jin, A Label Based Ant Colony Algorithm for Heterogeneous Vehicle Routing with Mixed Backhaul, doi: 10.1016/j.asoc.2016.05.011, Applied Soft Computing, 47, 224-234, (2016) [ Links ]

Xu, Y., L. Wang e Y. Yang, A New Variable Neighborhood Search Algorithm for the Multi Depot Heterogeneous Vehicle Routing Problem with Time Windows, doi: 10.1016/j.endm.2012.10.038, Electronic Notes in Discrete Mathematics, 39, 289-296, (2012) [ Links ]

Recibido: 27 de Marzo de 2019; Aprobado: 13 de Mayo de 2019

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons