SciELO - Scientific Electronic Library Online

vol.31 número4Comparación de la eficiencia de trampas Barber y Malaise para el estudio de la biodiversidad de Hexapoda de vegas altoandinasAntecedentes generales para la sustentabilidad de la producción hortícola en el valle de Azapa, Arica, Chile índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados


Idesia (Arica)

versión On-line ISSN 0718-3429

Idesia vol.31 no.4 Arica dic. 2013 


Taxonomic composition and abundance of epigean tenebrionids (Coleóptera: Tenebrionidae) in the Chilean Coastal Matorral

Composición taxonómica y abundancia de tenebriónidos epígeos (Coleóptera: Tenebrionidae) en el matorral costero de Chile


Jaime Pizarro-Araya1*, Jorge Cepeda-Pizarro

1 Laboratorio de Entomología Ecológica, Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena, Chile. * Corresponding author:


Taxonomic composition and abundance of epigean tenebrionids (Coleoptera: Tenebrionidae) in the Chilean Coastal Matorral. Pitfall traps were used to examine the taxonomic composition and abundance of the Tenebrionidae (Coleoptera) assemblage in the desert portion of the Chilean Coastal Matorral. During the study period, the assemblage was dominated by four genera: Gyriosomus, Nycterinus, Praocis and Scotobius. The most diverse genus was Gyriosomus, with 6 species, followed by Praocis, with 4 species. In terms of abundance, Gyriosomus hoppei (Gray) accounted for 41% of total captures, followed by Gyriosomus foveopunctatus Fairmaire (10%), Nycterinus rugiceps Curtis (10%), and Praocis (Praocis) spinolai Solier (7%). Some species (e.g., Gyriosomus foveopunctatus, G. reedi Kulzer, G. modestus Kulzer, and Praocis (Praocis) elliptica) Philippi & Philippi showed restricted distribution in the study area and may be indicators of endemism. The dominance of Gyriosomus raises a series of questions regarding their levels of endemism, species diversity and distribution, and functional role in the ecosystem under study.

Key words: coastal matorral, coastal desert, Gyriosomus, Tenebrionidae, epigean arthropods, pitfall traps.


Composición taxonómica y abundancia de tenebriónidos epígeos (Coleoptera: Tenebrionidae) en el matorral costero de Chile. Se emplearon trampas de intercepción de caída para estudiar la composición taxonómica y la abundancia del ensamble de Tenebrionidae (Coleoptera) en la porción desértica del matorral costero de Chile. Durante el periodo de estudio el ensamble de tenebriónidos estuvo dominado por cuatro géneros: Gyriosomus, Nycterinus, Praocis y Scotobius. El género más diverso fue Gyriosomus (6 especies), seguido por Praocis (4 especies). En lo que respecta a la abundancia, Gyriosomus hoppei (Gray) representó 41% del total de ejemplares capturados, seguido por Gyriosomus foveopunctatus Fairmaire (10%), Nycterinus rugiceps Curtis (10%) y Praocis (Praocis) spinolai Solier (7%). Algunas especies (p. ej., Gyriosomus foveopunctatus, G. reedi Kulzer, G. modestus Kulzer y Praocis (Praocis) elliptica Philippi & Philippi) presentaron un ámbito de distribución restringido en el área de estudio, por lo que podrían ser indicadores de endemismo. La dominancia de Gyriosomus plantea diversas preguntas respecto de los niveles de endemismo de este género, su diversidad y distribución de especies, y su función dentro del ecosistema en estudio.

Palabras clave: matorral costero, desierto costero, Gyriosomus, Tenebrionidae, artrópodos epígeos, trampas de intercepción de caída.


In Chile, studies on the role of arthropods in the structure and function of arid and semiarid ecosystems have focused mainly on the transitional coastal desert (26-320 Lat S), a desert which extends across different ecological and geomorphological areas (Rundel et al., 2007). The range of habitats found in this desert has favored the evolution of biota adapted to the arid conditions and the oscillations in humidity and dryness characteristic of this area (Gajardo, 1993; Rundel et al., 2007), and the formation of biodiversity and endemism hotspots in different areas of its geography (Cabrera & Willink, 1973). This desert is characterized by the presence of coleopteran species with particular species richness (Cepeda-Pizarro et al, 2005a, 2005b; Pizarro-Araya et al., 2012a), endemism (Jerez, 2000; Pizarro-Araya et al., 2012b), and restricted distribution (Pizarro-Araya & Jerez, 2004; Alfaro et al., 2013; Flores & Pizarro-Araya, 2012).

In the desert's southern limit, which also represents the southern limit of the plant biodiversity hotspots recognized for central Chile (Gaston, 2000), it is possible to distinguish a coastal scrub interface (30-320 S) featuring changes in the biotic structure of its components, mainly plants (Gajardo, 1993; Squeo et al., 2001) and rain (Novoa & Villaseca, 1989). Among the studies on coleopterans conducted in the Coastal Matorral we can mention Solervicens (1973) research on the coleopterans of the forests of Quinteros; Sáiz & Vásquez (1980) and Vásquez & Sáiz (1983-1985) on the taxocenosis of coleopterans in some Chilean steppes; Sáiz et al. (1990) on the impact of forest fires on the coleopteran fauna of the coastal sclerophyll forest; and Barbosa & Marquet (2002) on the effect of habitat fragmentation on the coleopteran fauna of the Fray Jorge National Park (Coquimbo Region, Chile). From these studies we can gather that (1) in general, the epigean arthropod fauna in the Matorral is poor both in species and specimens; (2) assemblages are characterized by the presence of few abundant species and some accessory ones; (3) assemblages tend to have a particular composition in each plant formation; (4) abundance and diversity appear to bear a positive correlation to plant diversity; (5) the phenological activity is markedly seasonal and related to food availability and quality; and (6) Tenebrionidae is apparently one of the most abundant and diverse Arthropoda families.

Tenebrionidae is a well-studied family of the entomofauna of desert ecosystems (Cloudsley-Thompson, 2001; Cepeda-Pizarro et al., 2005b). These insects are known to play a key role in the biological fragmentation of plant resources, in nutrient cycles, and in the diet of other consumer organisms, particularly vertebrates (Pizarro-Araya, 2010; Vidal et al., 2011). In addition, some Tenebrionidae species are used as indicators of climate conditions (Fattorini, 2010) or to identify areas of endemism or hotspots (Pizarro-Araya & Jerez, 2004; Carrara et al., 2011). In this context, the objective of this study is to determine the taxonomic composition and the variations in relative abundance of epigean tenebrionids in the desert portion of the Coquimbo Region's Coastal Matorral (30-320 Lat S), in Chile.

Materials and Methods

Location and description of the study site

The study was conducted in the coastal area of Chile's nothern-central region, which extends from 300 S (Las Tacas) to 32o S (Caracas, Los Vilos) in the Coquimbo Region, Chile (Fig. 1). The climate in the area is of Mediterranean type with low daily and annual temperature variation as a result of the sea influence (Novoa & Villaseca, 1989). The area corresponds to an interior desert area. The average annual precipitation in the valley is ca 104 mm (Novoa & Villaseca, 1989); June is the rainiest month, with 25.9 mm. The estimated evaporation reaches 1220 mm during the year with a monthly maximum of 172 mm in January and a monthly minimum of 47 mm in June. The dry season lasts 9 months. The average monthly temperature stays above 10 0C between January and December (Novoa & Villaseca, 1989).

Figure 1. Geographical location of the study sites within the Coquimbo Region, Chile. Sector A: shrubby steppe scrub; Sector B: forest steppe scrub; Sector C: arborescent steppe scrub.

The vegetation is mostly of steppe type with some influences both from northern and central Chile (Squeo et al., 2001). It consists of a series of patches of different sizes, most of them small and surrounded by a homogeneous matrix degraded by desertification. According to Gajardo (1993), the original plant formations of the study area are represented, from north to south, by a steppe of shrubs, scrubs, and sclerophyll scrubs. For purposes of this study, we divided the study area into three sectors, based on the plant formations, following Gajardo (1993): Sector A (shrubby steppe scrub), which includes the localities of Las Tacas, Lagunillas, and Morrillos; Sector B (forest steppe scrub), which includes the localities of Alcones Altos, Alcones Medios, and Pata de León; Sector C (arborescent steppe scrub), which includes the localities of Caracas 1, Caracas 2, and Subestación Quereo (Table 1 and Fig. 1).

Table 1. Temporal percentage relationships of epigean tenebrionids present in three localities of the steppe matorral (Coquimbo Region, Chile).

S1: shrubby steppe scrub, S2: forest steppe scrub, S3: arborescent steppe scrub.

Sector A is characterized by low plant coverage and the presence of low shrubs distributed on the coastal plains and the slopes of the coastal mountain range.The main plant communities in this sector are Adesmia microphylla Hook. & Arn. and Senna cumingii (Hook et Arn.) Irw. et Barneby var.; Heliotropium stenophyllum H. et A. and Fuchsia lycioides (Juss.) Mold., Myrcianthes coquimbensis (Barneoud) Landrum & Grifo and Echinopsis coquimbana (Molina) Friedich & Rowley; Alona filifolia (Hook. & Arn.) I.M.Johnst. and Plantago hispidula Ruiz & Pav. Sector B is characterized by low shrubs of heterogeneous density. The most common plant communities found in this sector are Azara celastrina D. Don. and Schinus latifolius (Gill. ex Lindl.) Engler.; Lithrea caustica (Molina) Hook & Arn. and Porlieria chilensis I.M.Johnst., Bahia ambrosioides Lag. and Puya chilensis Mol.; Helenium aromaticum (Hook.) Bailey; Baccharis vernalis F.H.Hellw. and Ribes punctatum Ruiz & Pav.; Adesmia tenella H. et A. and Erodium cicutarium (L.) L'Hér.; Puya chilensis Mol. Finally, sector C is characterized by the predominance of tall shrubs. The plant communities characteristic of this formation are Peumus boldus Mol. and Podanthus mitiqui Lindl.; Pouteria splendens (A.DC.) Kuntze and Sphacele salviae (Lindl). Briq.; Piptochaetium montevidense and Haplopappus rosulatus H.M. Hall; Nolana paradoxa Lindl. and Eriosyce chilensis (Hildm. ex K.Schum.).

Epigean tenebrionids sampling methodology

The specimens were captured using pitfall traps. Each trap consisted of two plastic cups placed one inside the other; the inner cup could be easily detached. The size of both cups was 7,4 and 7,6 cm in diameter and 10,2 and 12,0 cm in height, respectively. The inner cup was filled two thirds full with a 3:1:6 solution of formaline (10%), glycerine, and water. The traps were arranged following Cepeda-Pizarro et al. (2005a, 2005b).

The traps operated for three days in each study site during the month of September 2008. A grid of 45 x10 m was defined containing 30 pitfall traps, for a total sampling effort of 810 traps per day. The traps were installed under the plant cover or close to dominant plant species in each of the formations under study. The captured specimens were removed, cleaned, dried, and preserved in alcohol (700) until their processing and mounting. The material is now stored in the collection of the Ecological Entomology Laboratory (LEULS) of the University of La Serena, Chile. The captured specimens were taxonomically identified by comparing them to reference material stored in the collections of the Natural History National Museum (MNNC, Santiago, Chile) and the Ecological Entomology Laboratory (LEULS), and using the descriptions in Pizarro-Araya & Flores (2004, 2006), and Flores & Pizarro-Araya (2012).

Results and Discussion

Taxonomic composition and relative abundance distribution of the tenebrionid assemblage

A total of 17.942 specimens were captured that represented 8 tribes, 11 genera, and 19 species (Table 1). Gyriosomus Guérin-Méneville, with 6 species, was the most diverse genus, followed by Praocis Eschscholtz, with 4 species. The remaining genera were represented by only 1 species (Table 1).

The most abundant genus was Gyriosomus (63% of total capture), followed by Nycterinus Eschscholtz (10%), Praocis (7%), and Scotobius Germar (6%). It is worth noting that the abundance of Nycterinus corresponds exclusively to Nycterinus rugiceps Curtis, a species widely distributed in the Coastal Matorral (Peña, 1971) (Fig. 1). The numerically dominant species were Gyriosomus hoppei (Gray) (41% of total capture), followed by Gyriosomus foveopunctatus Fairmaire (10%), Nycterinus rugiceps (10%), and Praocis (Praocis) spinolai Gay & Solier (7%) (Fig. 1).

Distribution of the relative abundances of the tenebrionid assemblage per sector

Differences in the taxonomic composition and abundance of the tenebrionid assemblage were observed between sectors. Sector A (shrubby steppe scrub) was represented by 14 species, among which the most abundant were Gyriosomus hoppei, Gyriosomus luczotii, Praocis (Praocis) spinolai, Scotobius bullatus and Nycterinus rugiceps, all taxa endemic of coastal dune ecosystems (Table 2). Sector B (arborescent steppe scrub) was represented by 14 species, among which the most abundant were Gyriosomus foveopunctatus, Gyriosomus freyi, and Nycterinus rugiceps (Table 3). Sector C (woody steppe scrub) was represented by 13 species, among which the mos abundant were Arthroconus elongatus, Nycterinus rugiceps and Blapstinus punctulatus (Table 4).

Table 2. Temporal percentage relationships of epigean tenebrionids present in three localities of the shrubby steppe scrub (Sector A) (Coquimbo Region, Chile).

Table 3. Temporal percentage relationships of epigean tenebrionids present in three localities of the forest steppe scrub (Sector B) (Coquimbo Region, Chile).

Table 4. Temporal percentage relationships of epigean tenebrionids present in three localities of the arborescent steppe scrub (Sector C) (Coquimbo Region, Chile).

We identified Gyriosomus species with sympatric distribution patterns: Gyriosomus freyi, Gyriosomus hoppei, and Gyriosomus luczotii (found in sectors A and B); Praocis was represented by 4 species-two of them sympatric in sector B and sector C. Among these four species, Praocis (Praocis) sanquinolenta and Praocis (Praocis) spinolai were found in the entire study area, in accordance with Flores & Pizarro-Araya (2012). Other species showed restricted distribution ranges, such as Gyriosomus foveopunctatus and G. reedi, species found only in sector B, and G. modestus, Praocis (Praocis) elliptica, and Blapstinus punctulatus, found only in sector C (Table 1).

The fact that Gyriosomus prefers sandy environments agrees with observations made by Pizarro-Araya et al. (2011) indicating that those habitats allow for deeper ovipostures and lower energy expenditure. The resulting saved energy is used for egg production and searching for microhabitats (Deslippe et al., 2001; Pizarro-Araya, 2010).

The presence of Gyriosomus in the strip extending from 300 to 320 Lat S supports the idea put forward by some authors (Jerez, 2000; Pizarro-Araya & Jerez, 2004) who say that species with less vagile species would be an indication of different degrees of diversity and local endemism. This apparently is consistent with the characteristics of the flora (Armesto et al., 1993) or with a better supply of high-quality food resources, as it has been suggested by Rau et al. (1998) and Spotorno et al. (1998) in relation to the entomological elements of the 21-260 Lat S transect, and Vidal et al. (2011) on Gyriosomus batesi Fairmaire and Gyriosomus subrugatus Fairmaire, both species endemic from the Atacama desert (280 Lat S).

The diet strategies of Gyriosomus species may depend on physiological factors of each species. For example, Gyriosomus species show marked sexual dimorphism, which can modulate food search and manipulation based on the nutritional quality potential, especially in desert ecosystems (Polis, 1991). Therefore, females may show preference for prey of higher quality, such as exoskeletons or preimaginal stages of other arthropods. This strategy may be related to the amount of energy invested during the reproductive stage, which may improve their egg-laying and oviposture capacities. However, the trophic strategies showed by Gyriosomus lead us to postulate that this taxon occupies higher trophic levels, and as such their ability to influence the modulation of activities in these environments has been clearly underestimated. These species are likely responsible for the increase in the primary and secondary production of these ecosystems (Oksanen et al., 1981) either as a result of their yet unknown pollinating capacity or the role they play in the decomposition of elements in the environment. As is the case with Gyriosomus, it is expectable that other tenebrionid assemblages will also show variations in their ecological-trophic strategies neccesary to optimize the use of the more abundant and better quality resources available during the wet season (i.e., humid non-ENSO years or ENSO years) (Cepeda-Pizarro et al., 2005a, 2005b). The variations in the trophic selection behavior of this Nycteliini group raise a series of questions related to the functional role played by these species in the arid and semiarid ecosystems of Chile.

As the limited distribution of these endemic taxa increases their likelyhood of extinction (Myers et al., 2000), establishing areas of endemism is essential for the sustainable use and conservation of the biodiversity (Szumik et al., 2002). Knowledge of these taxonomical aspects is fundamental for building a general record of the entomofauna of these coastal scrub ecosystems in Chile.


Our acknowledgments to Gastón Villá (Sociedad Agrícola Lagunillas S.A.) and Eduardo Collantes (Fundo Caracas, Los Vilos) for providing us with facilities to work in their plots. Funding for this research was provided by the University of La Serena Research Board (DIULS 01020760 to J.C.P. and DIULS PR13121-VACDDI001 to J.P.A.).


Literature Cited

Alfaro, F.M.; Pizarro-Araya, J.; Flores, G.E. 2009. Epigean tenebrionids (Coleoptera: Tenebrionidae) from the Choros archipelago (Coquimbo Region, Chile). Entomological News, 120: 125-130.         [ Links ]

Alfaro, F.M.; Pizarro-Araya, J.; Letelier, L.; Cepeda-Pizarro, J. 2013. Distribución geográfica de los ortópteros (Insecta: Orthoptera) presentes en las provincias biogeográficas de Atacama y Coquimbo (Chile). Revista de Geografía Norte Grande, 56: 235-250.         [ Links ]

Armesto, J.J.; Vidiella, P.E. 1993. Plant life forms and biogeographic relations of the flora of Lagunillas (300S) in the fog-free pacific coastal desert. Annals of the Missouri Botanical Garden, 80: 499-511.         [ Links ]

Barbosa, O.; Marquet, P.A. 2002. Effects of forest fragmentation on the beetle assemblage at the relict forest of Fray Jorge, Chile. Oecologia, 132: 296-306.         [ Links ]

Cabrera, A.; Willink, A. 1973. Biogeografía de América Latina. Monografías de la OEA, Serie Biología. 122 pp.         [ Links ]

Carrara, R., Cheli, G.H.; Flores, G.E. 2011. Patrones biogeográficos de los tenebriónidos epígeos (Coleoptera: Tenebrionidae) del Área Natural Protegida Península Valdés, Argentina: implicancias para su conservación. Revista Mexicana de Biodiversidad, 82: 1297-1310.         [ Links ]

Cepeda-Pizarro, J.; Pizarro-Araya, J.; Vásquez, H. 2005a. Composición y abundancia de artrópodos epígeos del Parque Nacional Llanos de Challe: impactos del ENOS de 1997 y efectos del hábitat pedológico. Revista Chilena de Historia Natural, 78: 635-650.         [ Links ]

Cepeda-Pizarro, J.; Pizarro-Araya, J.; Vásquez, H. 2005b. Variación en la abundancia de la artropodofauna, con énfasis en tenebriónidos epígeos del desierto costero transicional de Chile. Revista Chilena de Historia Natural, 78: 651-663.         [ Links ]

Cloudsley-Thompson, J.L. 2001. Thermal and water relations of desert beetles. Naturwissenschaften, 88: 447-460.         [ Links ]

Deslippe, R.J.; Salazar, J.R.; Guo, Y.L. 2001. A darkling beetle population in West Texas during the 1997-1998 El Niño. Journal of Arid Environments, 49: 711-721.         [ Links ]

Di Castri, F.; Hajek, E.R. 1976. Bioclimatología de Chile. Imprenta-Editorial de la Universidad Católica de Chile. Santiago, Chile. 128 pp.         [ Links ]

Fattorini, S. 2010. Use of insect rarity for biotope prioritisation: the tenebrionid beetles of the Central Apennines (Italy). Journal of Insect Conservation, 14: 367-378.         [ Links ]

Flores, G.E.; Pizarro-Araya, J. 2012. Systematic revision of species of the South American genus Praocis Eschscholtz, 1829 (Coleoptera: Tenebrionidae). Part 1: Introduction and subgenus Praocis s. str. Zootaxa, 3336: 1-35.         [ Links ]

Gajardo, R. 1993. La vegetación natural de Chile: clasificación y distribución geográfica. Editorial Universitaria, Santiago, Chile. 165 pp.         [ Links ]

Gaston, K.J. 2000. Global patterns in biodiversity. Nature, 405: 220-227.         [ Links ]

Jerez, V. 2000. Diversidad y patrones de distribución geográfica de insectos coleópteros en ecosistemas desérticos de la región de Antofagasta, Chile. Revista Chilena de Historia Natural, 73: 79-92.         [ Links ]

Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. 2000. Biodiversity hotspots for conservation priorites. Nature, 403: 853-858.         [ Links ]

Novoa, R.; Villaseca, S. 1989. (Eds.) Mapa agroclimático de Chile. Instituto de Investigaciones Agropecuarias, Santiago, Chile. 126 pp.         [ Links ]

Oksanen, L.; Fretwell, S.D.; Arruda, J.; Niemela, P. 1981. Exploitation ecosystems in gradients of primary productivity. American Naturalist, 118: 240-261.         [ Links ]

Peña, L.E. 1971. Revisión del género Nycterinus Eschscholtz, 1829 (Coleoptera-Tenebrionidae). Boletín del Museo Nacional de Historia Natural (Chile), 32: 129-158.         [ Links ]

Pizarro-Araya, J. 2010. Hábitos alimenticios del género Gyriosomus Guérin-Méneville, 1834 (Coleoptera: Tenebrionidae): ¿qué comen las vaquitas del desierto costero? Idesia, 28: 115-119.         [ Links ]

Pizarro-Araya, J.; Flores, G.E. 2004. Two new species of Gyriosomus Guérin-Méneville from Chilean coastal desert (Coleoptera: Tenebrionidae: Nycteliini). Journal of the New York Entomological Society, 112: 121-126.         [ Links ]

Pizarro-Araya, J.; Flores, G.E. 2006. La posición sistemática de Geoborus lineatus (Guérin-Méneville), comb. nov. (ex. Gyriosomus) (Coleoptera: Tenebrionidae). Revista de la Sociedad Argentina de Entomología, 65: 85-90.         [ Links ]

Pizarro-Araya, J.; Jerez, V. 2004. Distribución geográfica del género Gyriosomus Guérin-Méneville, 1834 (Coleoptera: Tenebrionidae): una aproximación biogeográfica. Revista Chilena de Historia Natural, 77: 491-500.         [ Links ]

Pizarro-Araya, J.; Jerez, V.; Cepeda-Pizarro, J.; Alfaro, F.M. 2011. Caracteres preimaginales y aspectos bionómicos de Gyriosomus luczotii Laporte, 1840 (Coleoptera: Tenebrionidae), elemento endémico y erémico del desierto costero chileno. Animal Biodiversity and Conservation, 34.2: 37-44.         [ Links ]

Pizarro-Araya, J.; Vergara, O.E.; Flores, G.E. 2012a. Gyriosomus granulipennis Pizarro-Araya & Flores 2004 (Coleoptera: Tenebrionidae) un caso extremo a conservar. Revista Chilena de Historia Natural, 85: 345-349.         [ Links ]

Pizarro-Araya, J.; Alfaro, F.M.; Castillo, J.P.; Ojanguren-Affilastro, A.A.; Agusto, P.; Cepeda-Pizarro, J. 2012b. Assemblage of arthropods in the Quebrada del Morel private protected area (Atacama Region, Chile). Pan Pacific Entomologist, 88: 1-14.         [ Links ]

Polis, G.A. 1991. Complex trophic interactions in deserts an empirical critique of food-web theory. American Naturalist, 138: 123-155.         [ Links ]

Rau, J.R.; Zuleta, C.; Ganz, A.; Sáiz, F.; Cortes, A.; Yates, L.; Spotorno A.E.; Couve, E. 1998. Biodiversidad de artrópodos y vertebrados terrestres del Norte Grande de Chile. Revista Chilena de Historia Natural, 71: 527-554.         [ Links ]

Rundel, P.W.; Villagra, P.E.; Dillon, M.O.; Roig-Juñent, S.; Debandi. G. 2007. Deserts and Semi-Desert Environments. In: Veblen, T.; Young, K.; Orme, A. (Eds). The Physical Geography of South America: 158-183 p. Oxford Regional Environment Series. Oxford University Press.         [ Links ]

Sáiz, F.; Vásquez, E. 1980. Taxocenosis coleopterológicas epígeas en estepas de Chile semiárido. Anales del Museo de Historia Natural de Valparaíso (Chile), 13: 145-157.         [ Links ]

Sáiz, F.; Solervicens, J.; Vivar, C. 1990. Incendios forestales en el Parque Nacional La Campana, sector Ocoa, V Región, Chile. VI. Coleópteros epígeos. Impacto y recuperación. Anales del Museo de Historia Natural de Valparaíso (Chile), 6: 131-159.         [ Links ]

Solervicens, J. 1973. Coleópteros del bosque de Quintero. Anales del Museo de Historia Natural Valparaíso (Chile), 6: 115-159.         [ Links ]

Spotorno, A.E.; Zuleta, C.; Gantz, A.; Sáiz, F.; Rau, J.; Rosenmann, M.; Cortes, A.; Ruiz, G.; Yates, L.; Couve, E.; Marín. J.C. 1998. Sistemática y adaptación de mamíferos, aves e insectos fitófagos de la Región de Antofagasta, Chile. Revista Chilena de Historia Natural, 71: 501-526.         [ Links ]

Squeo, F.A.; Arancio, G.; Gutiérrez, J.R. 2001. Libro rojo de la flora nativa y de los sitios prioritarios para su conservación: Región de Coquimbo. Ediciones Universidad de La Serena, La Serena, Chile. 372 pp.         [ Links ]

Szumik, C.; Cuezzo, F.; Goloboff, P.; Chalup, A. 2002. An optimality criterion to determine areas of endemism. Systematic Biology, 51: 806-816.         [ Links ]

Vásquez, E.; Sáiz, F. 1983-1985. Respuesta de Carabidae y Tenebrionidae (Coleoptera) de una estepa de Acacia caven a la presencia de un foco de agua permanente. Anales del Museo de Historia Natural Valparaíso (Chile), 16: 71-86.         [ Links ]

Vidal, M.A.; Pizarro-Araya, J.; Jerez, V.; Ortiz, J.C. 2011. Daily activity and thermoregulation in predatore-prey interaction during the Flowering Desert in Chile. Journal of Arid Environments, 75: 802-808.         [ Links ]

Fecha de Recepción: 23 Agosto, 2013. Fecha de Aceptación: 30 Septiembre, 2013.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons