SciELO - Scientific Electronic Library Online

 
vol.7 número4El Aprendizaje de las Habilidades Sociales en la Universidad: Análisis de una Experiencia Formativa en los Grados de Educación Social y Trabajo SocialAcceso y uso de las Tecnologías de la información y las Comunicaciones (TICs) en el aprendizaje: El Caso de los Jóvenes Preuniversitarios en Caldas, Colombia índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Formación universitaria

versión On-line ISSN 0718-5006

Form. Univ. vol.7 no.4 La Serena  2014

http://dx.doi.org/10.4067/S0718-50062014000400005 

ARTICULOS

 

Combinación de Aprendizaje Cooperativo e Individual en una Asignatura de Química de Materiales

Combination of Cooperative and Individual Learning Techniques in a Material Chemistry Course

 

Massimo Lazzari

Univetsidad de Santiago de Compostela, Depattamento de Química Física, Facultad de Química, Campus Vida, 15782 Santiago de Compostela-España (e-mail: massimo.lazzati@usc.es)

 


Resumen

Se detalla la aplicación de distintas técnicas de aprendizaje cooperativo en una asignatura de química de materiales pata estudiantes de diferentes facultades científicas. Desde el curso 2010/2011 parte de los temas del programa se desatollaron mediante la técnica puzzle de Atonson, de juego-concurso o de grupo de investigación, además de las tradicionales clases magistrales y prácticas competitivas. La acogida de los cambios en la metodología didáctica por parte de los estudiantes ha sido positiva, tal y como ha resultado reflejado en las encuestas de evaluación del profesorado y en el incremento del porcentaje de aprobados. Por el otro lado, además de los comentarios positivos de los alumnos centrados el reconocimiento de la importancia del desarrollo de habilidades de trabajo grupal, se debe destacar algunas limitadas opiniones negativas relacionadas con la falta de costumbre al aprendizaje a través de técnicas de enseñanza no tradicionales.

Palabras clave: aprendizaje cooperativo, técnica puzzle de Aronson, aprendizaje activo.

 


Abstract

The application of vatious coopetative leatning techniques in a matetial chemistty coutse fot students of diffetent scientific faculties is tepotted. Since 2010/2011, patt of the ptogtam has been developed thtough jigsaw classtoom, leatning games ot team leatning techniques, in addition to classical lectutes and competitive ptactices. The teception of the changes in teaching methods by the students has been positive, as it has been teflected in the evaluation surveys of teachets and in the incteasing of the passing tate. On the othet hand, in addition to the positive feedback ftom students, mainly focused on the tecognition of the importance of developing skills in gtoup wotk, some few negative opinions mainly due to the lack of habit of wotking thtough nonttaditional teaching techniques, must be mentioned.

Keywords: cooperative learning, jigsaw classroom technique, active learning.

 


 

INTRODUCCIÓN

El aprendizaje individual en el aula sigue siendo el tipo de interacción más difundido a todos los niveles educativos y sobre todo en las aulas universitarias. Mediante este acercamiento clásico a la enseñanza el profesor se dirige por igual a todos los alumnos y resuelve individualmente las dudas o los problemas que van surgiendo en ellos, de maneta que cada alumno se centre únicamente en sus tareas pata lograr resultados positivos. La consecución de los objetivos individuales no influye por lo tanto en los resultados de los demás y la recompensa viene determinada por el trabajo personal sin prever ningún tipo de interacción y sin tener en cuenta el trabajo de los compañeros de clase.

Aunque no hay que descartar a priori las metodologías de aprendizaje que se centran en el desatollo individual, a menudo se considera que algunas de las carencias típicas de los estudiantes (centrándonos sobre todo en las aulas universitarias) como son la falta de interés durante la clase, una limitada capacitad de razonar y extraer en clase ideas clave pata desatollarlas posteriormente y una deficiente expresión oral (Tejedor y García-Valcárcel, 2007), se deban precisamente a la aplicación de metodologías tradicionales. Éstas no serían adecuadas pata motivar el alumno y tampoco pata fomentar la asunción de competencias transversales en su conjunto y, de maneta más específica, de las competencias interpersonales (es decir de las capacidades que permiten mantener una buena relación social) y sistémicas (relacionadas con la visión de conjunto y la capacidad de gestionar adecuadamente la totalidad de la actuación docente) (Prieto, 2007).

En este sentido, lo que se intenta estimular en actividades llevadas a cabo aplicando técnicas de aprendizaje no tradicionales y sobre todo dentro de las así llamadas actividades de aprendizaje cooperativo (Johnson et al., 1993) es el desatollo de habilidades y destrezas sociales, con claros beneficios pata el aprendizaje de los alumnos, que van desde una mallot motivación hasta una más limitada incidencia de las carencias antes citadas (Goikoetxea y Pascual, 2002). A diferencia de lo que oculte en las situaciones de aprendizaje individualista, en las de trabajo en equipo los alumnos tienen que trabajar conjuntamente y se logran los objetivos solamente si cada miembro del grupo consigue los suyos. Más concretamente, el aprendizaje cooperativo es un método que abarca un conjunto de técnicas que se basan en el uso didáctico de "equipos reducidos de alumnos, generalmente de composición heterogénea en rendimiento y capacidad, aunque ocasionalmente pueden set más homogéneos, utilizando una estructura de la actividad tal que asegure al máximo la participación igualitaria (pata que todos los miembros del equipo tengan las mismas oportunidades de participar) y se potencie al máximo la interacción simultánea ente ellos, con la finalidad de que todos los miembros de un equipo aprendan los contenidos escolares, cada uno hasta el máximo de sus posibilidades y aprendan, además, a trabajar en equipo" (Pujolas, 2009). De maneta muy esquemática, combinando las propuestas de los autores más influyentes en el desatollo tanto teórico como practico del aprendizaje cooperativo (Johnson et al., 1993; Kagan, 1994), los elementos básicos que estructuran estas actividades son: i) la interdependencia positiva ente los miembros del equipo; ii) la interacción simultánea ente ellos, con el objetivo de que todos los miembros de un equipo aprendan los contenidos académicos, cada uno hasta el máximo de sus posibilidades; iii) la responsabilidad individual de cada miembro de conseguir las metas que se le han asignado; iv) participación igualitaria.

Las aplicaciones didácticas en el ámbito universitario de las técnicas de aprendizaje cooperativo en disciplinas científicas e ingenierías son bastante numerosas (Felder y Brent, 2007) y una revisión exhaustiva iría más allá de los objetivos específicos de este artículo, donde el interés se limitará a antecedentes directamente relacionados con aplicaciones a la enseñanza de asignaturas de química. A maneta de ejemplo de la difusión de aplicaciones en clases o prácticas de laboratorio, una búsqueda que incluya los términos química (o chemistry) y aprendizaje cooperativo (o cooperative learning) en el Web of Science y en el SciELO citation index permite encontrar cerca de 200 artículos publicados entre 1994 y 2013, en su mayoría en el Journal of Chemical Education. Cabe destacar que la mayor parte de ellos discuten la aplicación de situaciones de aprendizaje cooperativo a asignaturas de química física, química orgánica y ciencia de los materiales, limitando la implementación y la valoración del rendimiento a aspectos muy concretos y limitados del programa, con el desarrollo de actividades de limitada duración, a menudo módulos auto-concluyentes de una hora (Jones et al., 2012). Entre los últimos ejemplos publicados, en Katacop y Doymus (2013) se valora la efectividad del uso de una técnica de aprendizaje cooperativo como la técnica puzzle de Atonson respecto a métodos tradicionales pata explicar los distintos tipos de enlace químico. La comparación entre las notas de examen obtenidas por estudiantes asignados al azar a grupos de enseñanza tradicional, de aprendizaje basado en el uso de técnicas de animación gráfica y de aprendizaje cooperativo puso en evidencia la menor capacidad de comprensión de los estudiantes sometidos a situaciones de aprendizaje individual. De maneta similar, Tien et al. (2002) y Wamset (2006) demostraron que la aplicación de otra situación cooperativa como la de la técnica de grupos de investigación a la enseñanza de la química orgánica básica permite mejorar de maneta considerable los resultados de los exámenes de fin de curso de los estudiantes de primer año de dos universidades de Estados Unidos. Los resultados de otra experiencia docente llevada a cabo en una universidad española incorporando metodologías activas basadas en la utilización del aprendizaje cooperativo, evaluación continua y las nuevas tecnologías en la enseñanza de una asignatura de Materiales de Construcción han evidenciado un aumento notable del número de aprobados respecto a los cursos anteriores, en los que se aplicaban métodos individuales (Reyes y Gálvez, 2010). Finalmente, se citan también los recién publicados trabajos de Madrid et al. (2013) y Regalado-Méndez et al. (2014).

Teniendo en cuenta estos prometedores resultados, en este artículo se describe la aplicación de distintas técnicas de aprendizaje cooperativo, además de clases magistrales y prácticas realizadas con metodologías tradicionales, en una materia de libre elección relacionada con la química de los materiales poliméricos, Degradación, Estabilización y Reciclaje de Plásticos, con el objetivo último de conseguir una mejora de la eficacia de la enseñanza. La asignatura, de 4,5 créditos (3,5 teóricos y 1 práctico), puede set cursada por estudiantes de la Universidad de Santiago de Compostela de las facultades de Química, Física, Farmacia e Ingeniería Química, de diferentes años de cartera, siendo 20 el número máximo de plazas establecido. La aplicación de técnicas de aprendizaje no tradicionales (Johnson et al., 1993; Slavin, 1995; Thousand, 1994) tiene los siguientes objetivos parciales, sobre todo teniendo en cuenta la participación de estudiantes con maduración heterogénea y curtícula académicos diferentes: i) conseguir una implicación más activa de todos los estudiantes, sobre todo en el laboratorio; ii) involucrarles activamente en su proceso de aprendizaje, con una mayor atención hacia los conocimientos con un mayor carácter aplicado; y iii) facilitar y fomentar la colaboración entre estudiantes de edad y áreas científicas distintas.

TECNICAS UTILIZADAS

Se aplican las técnicas de puzzle de Atonson (Atonson y Bridgeman 1979), de juego-concurso (DeVties y Edwards, 1973) y la técnica de grupos de investigación (Shatan, 1980), además de una práctica competitiva de laboratorio, ya que cada una de esta herramientas se adapta mejor a las necesidades didácticas de temas específicos de la asignatura. En la técnica de puzzle de Atonson (Atonson y Bridgeman 1979) se dividen los alumnos en equipos heterogéneos de 4 ó 5 miembros y a cada uno de sus componentes se le asigna y se le hace responsable de una parte diferente de la tarea a llevar a cabo. Con esta estructura de trabajo se podría decir que cada alumno posee una pieza vital de la gran totalidad, recordando por lo tanto un rompecabezas. En síntesis esta técnica consiste en los siguientes pasos: i) se organizan los equipos (grupos puzzle) pata trabajar un material académico que ha sido dividido en tantos subtemas como miembros tenga el equipo; ii) cada miembro se ocupará de estudiar o aprender un subtema; iii) los diferentes miembros de los distintos equipos puzzle que van a ocuparse de las mismas tareas se reúnen en grupos de expertos para estudiarlas y discutirlas; iv) los alumnos vuelven a sus grupos puzzle y "enseñan" su sección a los compañeros. Queda evidente que esta metodología es especialmente útil pata las áreas de conocimiento en las que los contenidos son susceptibles de ser "fragmentados" en diferentes partes, como son algunos temas de ciencias experimentales. En relación a los ejemplos de aplicaciones en química, se citan los trabajos de Jones et al. (2012) y Katacop y Doymus (2013).

La principal diferencia entre la técnica de grupos de investigación propuesta por Shatan (1980) y la de puzzle de Atonson consiste en permitir que los alumnos creen los grupos de trabajo, guiándose por los temas en los que están mejor preparados o que más les interesan. El número de ejemplos de aplicación en el ámbito de las ciencias experimentales es más limitado, quizás debido a esta mallot libertad de elección que requiere haber trabajado previamente habilidades sociales y de comunicación entre los alumnos. Se considera más apropiada pata estudiantes de ciencias sociales. El experimento más importante en este sentido fue llevado a cabo desarrollando temas de historia y geografía (Shatan y Shachat, 1988).

La técnica de juego-concurso de DeVties, conocida también como torneos de aprendizaje (DeVties y Edwards, 1973) combina elementos competitivos con aspectos típicos del aprendizaje cooperativo, ya que en un momento de su desarrollo, grupos heterogéneos compiten entre ellos. Los alumnos siguen una secuencia de aprendizaje en la cual primero reciben el material académico, después hacen ejercicios y prácticas en grupo pata asegurarse que todos los miembros se saben bien la lección. Cuando los compañeros determinan que todos están preparados, se hace finalmente la evaluación, en forma de torneo académico en que los estudiantes de cada equipo compiten con los miembros de similares niveles de rendimiento de los otros equipos para ganar puntos pata sus respectivos equipos. Esta situación didáctica ofrece la ventaja de poder trabajar contenidos de materias de una forma divertida a la vez que aprenden a mejorar sus relaciones interpersonales, a integrarse mejor en el grupo, a reconocer y valorar los esfuerzos realizados por cada uno de los miembros.

DESCRIPCIÓN GENERAL DE LA PROPUESTA

Los objetivos académicos del curso, que se ha impartido durante algunos años mediante metodologías individualistas, no han sido modificados con la introducción de las técnicas de aprendizaje cooperativo, ya que éstas solo van a tener la función de mejotar la eficacia de la enseñanza (aunque desplazando el centro de gravedad del profesor al alumno). Por el contrario, la metodología de enseñanza (Tabla 1) ha sido modificada introduciendo distintas técnicas de aprendizaje cooperativo, tanto para el desarrollo de la parte teótica del curso como para la parte practica. Para tener en cuenta la introducción de las técnicas de aprendizaje cooperativo en los temas 1, 5, 6 y 9, y en las prácticas se han llevado a cabo algunos pequeños cambios del programa a impartir (Tabla 2).

Tabla 1: metodología de la asignatuta Degradación, Estabilización y Reciclaje de Plásticos

 

Tabla 2: contenido de la asignatuta. Los temas/patte de temas a tealizat a través de técnicas de aprendizaje no tradicionales se evidencian en cursiva.

APLICACIÓN DEL APRENDIZAJE COOPERATIVO

Tema 1. Después de una introducción mediante clases magistrales, la última parte del tema, estabilidad y técnicas experimentales, se lleva a cabo a través de la técnica puzzle de Atonson. Todo esto con el doble objetivo de facilitar el acercamiento ente los alumnos y permitir una mejor comprensión de una parte de programa que se podría considerar como poco estimulante si se presentara con técnicas tradicionales de enseñanza (Traver y García, 2006). Teniendo en cuenta que normalmente el número de estudiantes es de 20, el profesor propone la formación de 5 grupos puzzle de 4 estudiantes, descomponiendo por lo tanto el trabajo en 5 partes: técnicas de análisis térmico, técnicas espectroscópicas, medidas mecánicas, técnicas de microscopia y mico-análisis. Los grupos se forman ajustándose al máximo criterio de heterogeneidad; es decir, en cada grupo entran sujetos con niveles de rendimiento diferentes, diferente año de carteta, diferentes cartetas y sexo diferente. Todo el material estará disponible en el aula, donde los grupos de expertos completarán su parte en 3 horas, antes de constituir de nuevo los grupos originarios o grupos puzzle. Cada experto informa a los compañeros de grupo en un tiempo de 20-30 minutos, de forma que la última parte del trabajo lleve 2 horas, además de otras 2 horas pata la redacción de un dossier por parte de cada grupo, resultando un total de 7 horas pata toda esta primera actividad de cooperación. La puntuación es idéntica pata cada miembro del grupo, ya que la evaluación individual de los conocimientos adquiridos se lleva a cabo dentro de la evaluación final sobre todos los temas teóricos.

Tema 5. Todo el tema se lleva a cabo a través de la técnica puzzle de Atonson, aunque variando el número de grupos y, en principio, su composición. Se constituyen 4 grupos puzzle de 5 estudiantes pata trata las siguientes partes: degradación mecánica, biodegradación y biodegradabilidad, degradación útil y degradación in vivo. En la medida de lo posible se intentará mantener la necesaria heterogeneidad en la formación de los grupos, intentando que no vuelvan a estar juntos los estudiantes de los grupos formados dentro de la actividad relacionada al tema 1. Solo parte del material para llevar a cabo la actividad de los grupos de expertos está disponible en el aula, ya que los estudiantes reciben información sobre dónde hacer búsquedas específicas de bibliografía a través recursos disponibles en red (biblioteca de la Facultad de Química). Se consideran necesarias 4 horas totales para terminar el trabajo de los grupos de expertos y 2 horas para la exposición de cada uno de los expertos a los compañeros de grupo, además de otras 3 horas para la redacción de un dossier por parte de cada grupo, sumando un total de 9 horas para esta segunda actividad de cooperación. La puntuación es idéntica para cada miembro del grupo.

Tema 6. El tema Estabilización y estabilizantes se adapta perfectamente a las dinámicas de la técnica juego-concurso. Se constituyen 5 grupos de 4 estudiantes, cuya heterogeneidad ya puede tener en cuenta los resultados adquiridos en las anteriores actividades de cooperación. Después de la explicación del tema por parte del profesor, los grupos tienen 2 horas para preparar las 4 partes/sujetos en las que está dividido y sobre las que tienen que concursar. En las 2 horas de clase siguientes se realizan 4 concursos de media hora cada uno, en los que participarán un miembro por grupo, de rendimiento similares. La puntuación de cada grupo, y de cada miembro del grupo, es la suma de las puntuaciones obtenidas por cada uno de los participantes de cada grupo en los 4 concursos.

Tema 9. Después de una introducción por parte del profesor, casi todo el tema Plásticos y medio ambiente es desarrollado por los estudiantes a través de proyectos de Grupos de investigación. Los estudiantes se dividen al principio del curso en 4 grupos de 5 personas y eligen un subtema de trabajo dentro de las opciones: reciclaje primario y secundario (r. mecánico), reciclaje terciario (r. químico), recuperación de energía y diseño industrial en función del reciclaje. Los estudiantes reciben unas primeras directrices sobre dónde y cómo localizar las fuentes de información y son monitorizados por el profesor durante todo el semestre, con el objetivo final de preparar un informe. La puntuación de cada grupo, y de cada miembro del grupo, depende de la evaluación, por parte de los estudiantes de los otros grupos, del informe y de la presentación final de todo el material preparado. La presentación final de los 4 grupos tiene lugar después de la presentación de la introducción del tema 9 por parte del profesor, representando las presentaciones de los 4 subtemas las últimas 2 horas de clase de toda la asignatura. Los miembros de cada grupo pueden decidir si uno o más miembros del grupo, aunque no todos, merecen una evaluación mejor que la del grupo en su totalidad.

Prácticas competitivas de caracterización e identificación de materiales plásticos. En un tiempo límite de 10 horas los 10 grupos formados teniendo en cuenta los resultados obtenidos en las anteriores actividades de cooperación, acoplando 1 estudiante con buenos resultados a uno con resultados peores, tienen que identificar un material plástico de composición desconocida. Las técnicas disponibles para la identificación son las mismas para todos los grupos, que pueden pedir consejos al profesor sobre la realización de los análisis, pero no sobre la interpretación de los mismos. Todos los grupos que acierten la identificación reciben la puntuación máxima, mientras los demás son evaluados de forma proporcional. La puntuación de los dos miembros del grupo es la misma.

PROCEDIMIENTO DE EVALUACIÓN

La evaluación de los estudiantes tiene en cuenta tanto los resultados obtenidos en cada una de las cinco experiencias de aprendizaje cooperativo como la puntuación obtenida en el examen escrito individual, que se lleva a cabo sobre los 9 temas tratados durante la asignatura, independientemente de la metodología de enseñanza. La nota final es la suma de las puntuaciones en Tabla 3. Se tienen por lo tanto en cuenta las notas de las actividades cooperativas (notas de grupo) y la nota individual del examen escrito final, promediando las capacidades individuales con la capacidad de llevar a cabo actividades colaborativas.

Tabla 3: peso de las diferentes actividades evaluadas sobre la nota final.

APLICACIONES Y DISCUSIÓN

Con el fin de evaluar la variación de la eficacia de la enseñanza con la aplicación a partir del curso 2010/2011 de los diferentes métodos de aprendizaje cooperativo descritos anteriormente, se hizo referencia tanto a parámetros analíticos como a las opiniones y comentarios recogidos directamente de los alumnos. En particular, en términos de acogida del método, se consideran especialmente relevantes los resultados de las encuestas de satisfacción del alumnado con la docencia, realizadas manteniendo el mismo cuestionario estándar de 7 preguntas puesto a punto por el Vicerrectorado de Calidad y Mejora de Procedimientos de la Universidad de Santiago de Compostela y utilizado desde la implantación de la materia. No se ha considerado conveniente cambiarlo para asegurar homogeneidad y continuidad en los procesos de evaluación. En la Tabla 4 se recogen las medias de las notas recibidas por el profesor en los tres últimos cursos realizados aplicando metodologías de aprendizaje individual (de 2007/2008 a 2009/2010), comparadas con los resultados del único curso posterior al cambio metodológico por el que se haya realizado dicha encuesta oficial (2011/2012). En el cuestionario se pide a los alumnos una valoración de 1 a 5 (1=nada, 2=poco, 3=aceptable, 4=bastante, 5=mucho). El porcentaje de participantes en las encuestas ha sido constante y alrededor del 30% de media.

Tabla 4: resultados de las encuestas de evaluación del profesorado de la asignatura.

Aunque el cuestionario no haya sido diseñado para valorar materias impartidas de manera no tradicional, se considera que pueda aportar informaciones significativas también en éstas. Los resultados son en general satisfactorios, pasando de una valoración media global de 4.32 a 4.93, respecto a una nota media del profesorado de la universidad que se mantuvo constante alrededor de 3.5. Resulta especialmente relevante la evaluación de la labor de estímulo del profesor a comprender la materia (pregunta 2) pasada de 4.07 a 5 y más en general de satisfacción con el profesor (preguntas 1 y 7, respectivamente de 4.15 y 4.50 a 5), que sin duda se relacionan con una mejora de la relación alumno-profesor y una exitosa acogida de las actividades innovadoras. En cualquier caso, más allá de la consideración por parte de los alumnos de un aprendizaje cualitativamente mejor (reflejada sobre todo en las preguntas 4 y 6), parece más significativo comparar el nivel de preparación de los alumnos a través de un seguimiento del número de aprobados, considerado también por otros autores (Felder y Brent, 2007; Reyes y Gálvez, 2010; Karacop y Doymus, 2013) como el parámetro más importante para poder sacar conclusiones cuantitativas.

Cabe destacar que por sus características de materia de libre elección, la asignatura ha tenido desde su implantación un elevado porcentaje de aprobados en primera convocatoria de examen y una limitada incidencia de alumnos no presentados, que hace difícil una comparación de resultados dentro de niveles, en cualquier caso, superiores a la media de la universidad (alrededor del 50% de aprobados en el periodo considerado). En la Tabla 5 se recoge la variación del porcentaje de aprobados en la primera convocatoria de examen sobre alumnos que participaron activamente a las propuestas didácticas. Para no falsar la estadística no se ha hecho referencia al total de alumnos matriculados, ya que siempre hay un porcentaje pequeño pero variable de estudiantes que sin participar a las clases tienen derecho a examen, tal y como previsto por los estatutos de la universidad, y suele presentarse en las siguientes convocatorias.

Tabla 5: porcentaje de aprobados en primera convocatoria sobre asistentes activos.

No obstante la media de aprobados desde su implantación resulta ser muy alta (> 80%), se puede notar como en comparación con el último año académico con metodología individualizada el porcentaje de aprobados subió de manera apenas apreciable en 2010/2011, pasando finalmente al valor máximo en los dos último curso. Estas cifras son muy buenas y sin duda esperanzadoras, pero necesitarían de más años de experimentación docente para poder confirmar de manera univoca la bondad de los cambios introducidos. No obstante, hay que tener también en cuenta los comentarios de los alumnos, o por lo menos de algunos de ellos, no siempre completamente positivos hacia las nuevas propuestas educativas.

La opinión de los alumnos ha sido recogida de manera informal, durante las clases magistrales o las actividades cooperativas, o a lo largo del periodo didáctico, directamente durante las tutorías o encuentros individuales con los alumnos para resolver dudas; todo ello sin olvidar los comentarios y opiniones expresadas libremente entre pares mientras se llevan a cabo las actividades en grupo. Entre los comentarios positivos, la mayoría, sobre las diferentes ventajas del trabajo en grupo, merece la pena destacar, entre los más comunes, los que hacen referencia a la importancia de la aportación de diferentes puntos de vista, de intercambio de informaciones, de comprensión del espíritu de grupo (este último valido también para la práctica competitiva). Al contrario los comentarios negativos se centran principalmente en un desacuerdo con las modalidades y los tiempos del trabajo cooperativo, a veces buscando una justificación en la supuesta pérdida de tiempo que estos conllevan o en la falta de costumbre. Siempre en relación a los puntos de vista no favorables a las actividades de aprendizaje cooperativo, hay que recordar que en cada curso algunos alumnos decidieron no participar a ellas y acudir directamente al examen escrito final. El porcentaje de estos alumnos ha sido en cualquier caso comparable a él detectado en los cursos anteriores.

CONCLUSIONES

En general, la incorporación de diferentes técnicas de aprendizaje cooperativo y de una practica competitiva a una materia de química de los materiales ha demostrado ser una herramienta muy útil para fomentar un aprendizaje activo sin perder de vista las ventajas de una enseñanza llevada a cabo con metodología tradicional, por lo menos en los temas que mejor se adaptan a un trabajo individual. Más específicamente, de los antecedentes de la literatura expuestos, de los argumentos y aplicaciones presentadas y de la discusión de los resultados se pueden obtener las siguientes conclusiones puntuales:

i) La aplicación de métodos activos paralelamente a la impartición de clases magistrales ha conllevado a un aumento del porcentaje de aprobados.

ii) La acogida de los cambios en la metodología didáctica por parte de los estudiantes ha sido positiva, tal y como ha resultado reflejado en las encuestas de evaluación del profesorado. La nota media ha pasado de un valor ya elevado al valor máximo en casi todos los aspectos cubiertos por la encuesta, dentro de los que cabe destacar el grado de satisfacción por la labor de estímulo del profesor a comprender la materia y, más en general, con el profesor.

iii) Aunque los comentarios informales de los alumnos hayan sido mayoritariamente favorables, existen opiniones de alumnos resistentes o incluso hostiles hacia el trabajo en grupo.

iv) La mejor solución para enfrentarse a este limitado rechazo está no solo en la mejor puesta a punto de las actividades innovadoras dentro de la materia si no sobretodo en una deseable y creciente propuesta de metodologías de aprendizaje no tradicionales en el conjunto de actividades académicas del alumnado.

REFERENCIAS

Aronson, E., y Bridgeman, D., Jigsaw groups and the desegregated classroom: In pursuit of common goals, Personality and Social Psychology Bulletin, 5, 438-446 (1979).         [ Links ]

DeVries, D. y Edwards, K., Learning games and student teams: Their effect on the classroom process, Amer. Educ. Research J., 10, 307-318 (1973).         [ Links ]

Felder, R.M. y Brent, R., Cooperative Learning, en Mabrouk, P.A. ed., Active Learning: Models from the Analytical Sciences, ACS Symp. Ser. 970. ACS, Washington, USA, cap. 4, 34-53 (2007)        [ Links ]

Goikoetxea, E. y Pascual, G. G. Aprendizaje cooperativo: bases teóricas y hallazgos empíricos que explican su eficacia, Educación XX1, 5, 227-247 (2002).         [ Links ]

Johnson, D.W., Johnson, R.T. y Holubec, E.J., Cooperation in the Classroom (6th ed.), Interaction Book Company, Edina, USA (1993).         [ Links ]

Jones, T.N., Graham, K. J. y Schaller, C.P., A jigsaw classroom activity for learning IR analysis in organic chemistry, J. Chem. Ed., 89, 1293-1294 (2012).         [ Links ]

Kagan, S., Cooperative Learning, Kagan Publishing, San Clemente, USA (1994).         [ Links ]

Karacop, A. y Doymus, K., Effects of jigsaw cooperative learning and animation techniques on students' understanding of chemical bonding and their conceptions of the particulate nature of matter. J. Sci. Educ. Technol. 22, 186-203 (2013).         [ Links ]

Madrid J.C., Arellano M., Jara R., Merino C. y Balocchi E. El aprendizaje cooperativo en la comprensión del contenido "disoluciones". Un estudio piloto. Educación química, 24 (núm. extraord. 2), 471-479 (2013).         [ Links ]

Prieto, L., El aprendizaje cooperativo, PPC, Madrid, España (2007).         [ Links ]

Pujolas, P., La calidad en los equipos de aprendizaje cooperativo. Algunas consideraciones para el cálculo del grado de cooperatividad, Revista de Educación, 349, 225-239 (2009).         [ Links ]

Regalado-Méndez A., Delgado-Vidal F.K., Martínez-López R.E. y Peralta-Reyes E. Balanceo de Ecuaciones Químicas Integrando las Asignaturas de Química General, Algebra Lineal y Computación: Un Enfoque de Aprendizaje Activo. Formación Universitaria, 7(2), 29-40 (2014).         [ Links ]

Reyes, E. y Gálvez, J., Experiencias docentes en innovación educativa como mejora de una enseñanza tradicional de los materiales de construcción, Formación Universitaria, 3(4), 13-24 (2010).         [ Links ]

Sharan, S., Cooperative Learning in teams: recent methods and effects on achievement attitudes and ethic relations, Review of Educ. Research, 50, 241-271 (1980).         [ Links ]

Sharan, S. y Shachar, H, Language and learning in the cooperative learning classroom. Springer, New York, USA (1988).         [ Links ]

Slavin, R., Cooperative Learning, Allyn & Bacon, Massachusetts, USA (1995).         [ Links ]

Tejedor, F.J. y García-Valcárcel, A., Causas del bajo rendimiento del estudiante universitario (en opinión de los profesores y alumnos). Propuestas de mejora en el marco del EEES, Revista de Educación, 342, 443473 (2007).         [ Links ]

Thousand, J.S, Creativity and Collaborative Learning: A Practical Guide to Empowering Students and Teachers, Brooks Publishing Co., Baltimore, USA (1994).         [ Links ]

Tien, L.T., Roth, V. y Kampmeier, J.A., Implementation of a Peer-Led Team Learning Approach in an Undergraduate Organic Chemistry Course, J. Research Sci. Teaching, 39, 606-632 (2002).         [ Links ]

Traver Martí, J.A. y García López, R., La Técnica Puzzle de Aronson como Herramienta para Desarrollar la Competencia "Compromiso Ético" y la Solidaridad en la Enseñanza Universitaria, Revista Iberoamericana de Educación, 40(4), 1-9 (2006).         [ Links ]

Wamser, C.C., Peer-Led team learning in organic chemistry: effects on student performance, success, and persistence in the course, J. Chem. Ed., 83, 1562-1566 (2006).         [ Links ]


Recibido Abr. 29, 2014; Aceptado Jun. 13, 2014; Versión final recibida Ago. 4, 2014.