SciELO - Scientific Electronic Library Online

vol.36 número1Presencia de Schedophilus haedrichi Chirichigno, 1973 (Osteichthyes: Centrolophidae) en el Pacífico colombiano y ampliación de su rango de distribución geográficaPresencia de juveniles de tiburón aletinegro Carcharhinus limbatus (Carcharhiniformes: Carcharhinidae) en la zona norte de la ecoregión Tayrona, Caribe colombiano índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados


Latin american journal of aquatic research

versión On-line ISSN 0718-560X

Lat. Am. J. Aquat. Res. v.36 n.1 Valparaíso  2008



Lat. Am. J. Aquat. Res., 36(1): 109-113, 2008
DOI: 10.3856/vol36-issuel-fulltext-10

Short Communication


Dynamic patterns of zooplankton transport and migration in Catuama Inlet (Pernambuco, Brazil), with emphasis on the decapod crustacean larvae*

Patrones dinámicos de transporte y migración de zooplancton en el estuario Catuama (Pernambuco, Brasil), con énfasis en las larvas de crustáceos decápodos


Ralf Schwamborn1,5§, Mauro de Meló Júnior2, Sigrid Neumann Leitão, Werner Ekau3& Maryse Nogueira Paranaguá4

1Departamento de Zoología, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
2Departamento de Oceanografía, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
3Center for Tropical Marine Ecology (ZMT), Bremen, Germany
4Departamento de Biología, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil
5Present address: Departamento de Zoología, Universidade Federal de Pernambuco Av. Professor Moraes Regó, 235, 50740-550, Recife, PE, Brazil
§: CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) fellow

Dirección para correspondencia

ABSTRACT. The objective of this study was to quantify and to model zooplankton transport with emphasis on decapod crustacean larvae. Sampling was carried out at three depths with a plankton pump coupled to a 300-/¿m mesh. Current data were obtained with an ADCP. Our data showed the existence of vertically and horizontally heterogeneous current and transport fields. We identified 27 groups of Decapoda (larvae of Sergestidae, Porcellanidae, Upogebiidae, Cari dea, Brachyura). Most of the species and larval phases showed characteristic vertical migration patterns, in phase with the diurnal tidal cycles, thus enhancing retention or export from the estuary.

Keywords: estuarine-coastal flows, ADCP, high resolution 3D transport model, zooplankton transport, vertical migration, decapod larvae.

RESUMEN. Esta investigación tiene como objetivo cuantificar y modelar el transporte de zooplancton, con énfasis en las larvas de Crustacea Decapoda. El muestreo se realizó a tres profundidades con una bomba de plancton acoplada a una red con malla de 300 /¿m. Se obtuvieron los datos de corrientes con un ADCP. Los datos mostraron la existencia de campos de corrientes y de transporte vertical y horizontal heterogéneos. Se identificaron 27 grupos de Decapoda (larvas de Sergestidae, Porcellanidae, Upogebiidae, Caridea, Brachyura). La mayoría de las especies y fases larvales mostraron patrones de migración vertical característicos, en fase con los ciclos de la marea diurnos, favoreciendo la retención o exportación del estuario.

Palabras clave: flujos estuario-costa, ADCP, modelo de transporte 3D de alta resolución, transporte de zooplancton, migración vertical, larvas de Decapoda.


Tropical mangrove estuaries are widely known to provide a habitat for innumerous invertebrate species and that high adult biomasses may build up in these areas (Schwamborn & Saint-Paul, 1996). Whereas the outwelling of detritus and other particulates from tropical mangrove estuaries  has been largely investigated (Dame et ah, 1986; Dame & Lefeuvre, 1994; Lee, 1995; Schwamborn & Saint-Paul, 1996; Meló Júnior et ah, 2007), the research of mechanis ms involved in larval export from tropical estuaries has been limited to a few studies on the export of decapod shrimp and crab larvae (Dittel et al., 1991; Schwamborn & Bonecker, 1996; Fernandes et ah, 2002), although larval production may be one of the main processes of benfho-pelagic coupling in mangrove areas (Schwamborn et ah, 2002). The present study is the first attempt to quantify and model the dynamic transport of decapod crustacean larvae in a tropical estuarine inlet using high-resolution 3D current data and vertically and horizontally discrete plankton sampling.

Sampling was performed in Catuama Inlet (northeastern Brazil), which separates the northern margin of Itamaracá Island from the adjacent continent. Detailed descriptions of the Itamaracá area have been published elsewhere (Schwamborn, 1997;Medeiros etal., 2001). Samples were taken on board a small wooden vessel during spring tide (05-06 August 2001) and neap tide (11-12 August 2001) at 3-hour intervals over 12 hours for spring tide (n = 32 samples) and 22 hours for neap tide (n = 56 samples). Plankton samples were taken with a pump at three stations along a transect across the inlet. At the central station (Center or Convergence), three depth levels were sampled (50 cm below the surface, midwater, and 50 cm off the bottom); at the lateral stations, (Continent and Island), samples were taken only at subsurface and off the bottom. Thus, seven samples were taken for each sampling period. Sample water was pumped on board through a conical 300 µm plankton net for 3 to 5 minutes per sample at approximately 100 litres per minute. Immediately after sampling, all samples were fixed with formaline (final concentration: 4%; buffered with 5 g·L-1 sodium tetraborate). Before each sampling series, a complete 3-D current profile from one margin to the other was obtained with an ADCP (acoustic Doppler current profiler) probe that was attached to the side of the boat. Current velocity and direction were also measured continuously with the ADCP (RD Instruments) during all plankton samplings. In the laboratory, all samples were weighed (wet weight) and the zooplankton identified and counted in toto. Instantaneous transport rates (ind·s-1m 2) of whole zooplankton and specific decapod crustacean taxa and stages were obtained by multiplying organism densities (ind·s·m-3) with the current velocity (m·s-1) for each sample. Total export or import rates (ind·s-1) were calculated by multiplying transport rates with the corresponding cross-sectional transect face area (m2).

The ADCP profiles showed the predominance of vertically and horizontally heterogeneous current fields. Accordingly, zooplankton transport was not homogenous, with higher organism and biomass transport rates in the surface layer. Most of the plankton export (biomass and organisms) from the estuary occurred during the low tide (Fig. 1). The total average instantaneous biomass export transport was 98.1 + 75.9 mg·-2·s-1 during spring tide and 31.46 + 26.52 mg·-2·s-1 during neap tide (Melo Júnior et ah, 2007). The main biomass transport peaks were related to peak densities of decapod larvae (Fig. 2) and calanoid copepods. The total average instantaneous zooplankton export transport was 831.5 + 1192.5 ind·m-2·s-1 (spring tide) and 342.3 + 445.8 ind·m-2·s-1 (neap tide). We identified 27 decapod taxa (larvae of Sergestidae, Porcellanidae, Upogebiidae, Cari dea, Brachyura). The dominant taxa were the first larval stages of Lucifer faxoni, Acetes americanus, Petrolisthes armatus, Upogebia spp., Alpheidae, Pinnixa spp., and Uca spp. Most species and stages showed characteristic vertical migration patterns in phase with tidal and diurnal cycles, enhancing estuarine retention or export.

The importance of tropical estuaries as sources of invertebrate larvae, and specifically decapod larvae, for marine ecosystems was partially confirmed in the present study. In addition to the massive export of mangrove-dwelling brachyuran and porcellanid crab larvae, this tropical estuary seems to be an important breeding area for sergestid shrimps (Luciferfaxoni, Acetes americanus). Especially for L. faxoni, our results indicate the occurrence of an important retention of virtually all larval stages in the Catuama Inlet area. This confirms the results of earlier studies in this area (Schwamborn, 1997; Schwamborn et ah, 2001) that showed high densities of sergestid larvae in the Catuama area. Our study showed that the combination of high-resolution three-dimensional ACDP current profiles and vertically and horizontally discrete plankton sampling techniques can be an effective way to investigate dynamic transport patterns of invertebrates in estuarine areas.


Dame, R. & J.C. Lefeuvre. 1994. Tidal exchange: import-export of nutrients and organic matter in new and old world salt marshes: conclusions. In: W.J. Mitsch (ed.). Global wetlands: old world and new. Elsevier Science BV, Amsterdam, pp. 303-305.        [ Links ]

Dame, R., T. Chrzanowski, K., Bildstein, B., Kjerfve, H., Mckellar, D., Nelson, J., Spurrier, S., Stancyk, H., Stevenson, J. Vernberg & R. Zingmark. 1986. The outwelling hypothesis and North Inlet, South Carolina. Mar. Ecol. Progr. Ser., 33: 217-229.        [ Links ]

Dittel, A.I., C.E. Epifanio & O. Lizano. 1991. Flux of crab larvae in a mangrove creek in the Gulf of Nicoya, Costa Rica. Estuar. Coast. Shelf Sci., 32: 129-140.        [ Links ]

Fernandes, L.D. de A., S.L.C. Bonecker & J L. Valentim. 2002. Dynamic of decapod crustacean larvae on the entrance of Guanabara Bay. Braz. Arch. Biol. Technol., 45(4): 491-498.        [ Links ]

Lee, S.Y. 1995. Mangrove outwelling: a review. Hydrobiologia, 295: 203-212.        [ Links ]

Medeiros, C, B. Kjerfve, M. Araujo-Filho & S. Neumann-Leitão. 2001. The Itamaracá estuarine ecosystem, Brazil. In: U. Seeliger & B. Kjerfve (eds.). Ecological studies: coastal marine ecosystems of Latin America. Springer-Verlag, Berlin, 144:71-81.        [ Links ]

Melo Junior, M., M.N. Paranaguá, R. Schwamborn, S. Neumann-Leitão & W. Ekau. 2007. Fluxes of zooplankton biomass between a tidal estuary and the sea in northeastern Brazil. Braz. J. Oceanogr, 55(4): 239-249.        [ Links ]

Schwamborn, R. 1997. The influence of mangroves on community structure and nutrition of macrozooplankton in northeast Brazil. ZMT Contribution No. 4, Bremen, 78 pp.        [ Links ]

Schwamborn, R. & A.C.T. Bonecker. 1996. Seasonal changes in the transport and distribution of meroplankton into a Brazilian estuary with emphasis on the importance of floating mangrove leaves. Braz. Arch. Biol. Technol., 39(2): 451-462.        [ Links ]

Schwamborn, R. & U. Saint-Paul. 1996. Mangroves -Forgotten forests? Natural Resources and Development 43/44: 13-36.        [ Links ]

Schwamborn, R, M. Voss, W. Ekau & U. Saint-Paul. 2002. How important are mangroves as carbon sources for decapod crustacean larvae in a tropical estuary? Mar. Ecol. Progr. Ser, 229: 195-205.        [ Links ]

Schwamborn, R., S. Neumann-Leitão, T.A. Silva, A.P. Silva, W. Ekau & U. Saint-Paul. 2001. Distribution and dispersal of decapod crustacean larvae and other zooplankton in the Itamaracá estuarine system, Brazil. Trop. Oceanogr, 29(1): 1-13.        [ Links ]

Received: 5 May 2005; Accepted: 11 March 2008.

Corresponding author: Ralf Schwamborn (

* This work was presented at the XXV Congreso de Ciencias del Mar de Chile and the XI Congreso Latinoamericano de Ciencias del Mar (COLAC-MAR), in Viña del Mar, 16-20 May 2005.


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons