SciELO - Scientific Electronic Library Online

vol.41 issue3New records of Lolliguncula (Lolliguncula) argus Brakoniecki & Roper, 1985 (Myopsida: Loliginidae) in northwestern MexicoFirst record of intersexuality in Porcellanaplatycheles (Pennant, 1777) (Decapoda: Anomura: Porcellanidae) author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Latin american journal of aquatic research

On-line version ISSN 0718-560X

Lat. Am. J. Aquat. Res. vol.41 no.3 Valparaíso July 2013 

Short Communication


Crustacean zooplankton species richness in Chilean lakes and ponds (23°-51°S)

Riqueza de especies de crustáceos zooplanctónicos en lagos y lagunas chilenas (23°-51°S)


Patricio De los Ríos-Escalante1

1 Laboratorio de Ecología Aplicada y Biodiversidad, Escuela de Ciencias Ambientales Facultad de Recursos Naturales, Universidad Católica de Temuco P.O. Box 15-D, Temuco, Chile
Corresponding author: Patricio De los Ríos-Escalante (

ABSTRACT. Chilean inland-water ecosystems are characterized by their low species-level biodiversity. This study analyses available data on surface area, maximum depth, conductivity, chlorophyll-α concentration, and zooplankton crustacean species number in lakes and ponds between 23° and 51°S. The study uses multiple regression analysis to identify the potential factors affecting the species number. The partial correlation analysis indicated a direct significant correlation between chlorophyll-α concentration and species number, whereas the multiple regression analysis indicated a direct significant response of species number to latitude and chlorophyll-α concentration. These results agree with findings from comparable ecosystems in Argentina and New Zealand.

Keywords: species richness, zooplankton, chlorophyll-α, conductivity, limnology, Chilean Patagonia.

RESUMEN. Los ecosistemas acuáticos continentales chilenos se caracterizan por su baja riqueza de especies. Este estudio analiza los datos disponibles en área superficial, área, profundidad máxima, conductividad, concentración de clorofila-α y número de especies de crustáceos zooplanctónicos en lagos y lagunas entre 23° y 51°S. El estudio utiliza el análisis de regresión múltiple para identificar factores potenciales que afectan el número de especies. El análisis de correlaciones parciales indicó la existencia de una correlación directa entre concentración de clorofila-α y el número de especies, mientras que el análisis de regresión múltiple indicó una respuesta directa entre el número de especies con la latitud y la concentración de clorofila-α. Estos resultados concuerdan con hallazgos en ecosistemas comparables, de Argentina y Nueva Zelanda.

Palabras clave: riqueza de especies, zooplancton, clorofila-α, conductividad, limnología, Patagonia chilena.


Species number of Chilean inland waters has been studied mainly in Patagonian latitudes (38°-51°S). The low species-level biodiversity found there is attributed to oligotrophy associated with these southern latitudes (Campos, 1984; Soto & Zúñiga, 1991; De los Ríos-Escalante, 2010). However, in the north of Chile, species-level biodiversity and conductivity show an inverse relationship (De los Ríos-Escalante, 2010). Southern regions (45°-53°S), present a broad range of environmental conditions, from oligotrophic lakes to shallow ponds, and they exhibit correspondingly wide trophic status (Soto et αΙ., 1994). These environmental conditions are also associated with variation in species number and in species associations (De los Ríos, 2008). For example, descriptions of Torres del Paine National Park (51°S), indicate that the species number is regulated directly by chlorophyll concentration and inversely by conductivity (Soto & De los Ríos, 2006). These studies are supported by De los Ríos-Escalante (2010), who described the zooplankton assemblages in each hydrological region (north of Chile, central Chile, Patagonian lakes and Patagonian ponds), as separate geographical systems not as integrated data.

The role of trophy as a regulator of species number has been described for Chilean lakes (Soto & Zúñiga, 1991; Woelfl, 2007). This finding is in agreement with the general principles of community ecology that indicate direct associations between species number and ecosystem productivity (Jaksic, 2001). Nevertheless, results based on descriptions of northern Hemisphere lakes indicate a direct association between lake surface area and species number (Dodson, 1992; Dodson & Silva-Briano, 1996; Waide et al., 2003; Willing et al., 2003; Dodson et al., 2005; Pinto-Coelho et al., 2005). These results do not agree with observations for Chilean lakes (Soto & Zúñiga, 1991; De los Ríos-Escalante, 2010). The present study analyses the literature data on species number in Chilean lakes to identify the chlorophyll-α concentration (as a proxy for trophy level) and latitude, surface, maximum depth and conductivity as potentially affecting species number.

Literature addressing crustacean zooplankton species number for Chilean lakes (Campos et al., 1983, 1988, 1990, 1992a, 1992b; 1994a, 1994b; Schmidt-Araya & Zúñiga 1992; Villalobos, 1999; Villalobos et al., 2003; Soto & De los Ríos, 2006; De los Ríos, 2008; De los Ríos & Roa, 2010; De los Ríos et al., 2010; Table 1) was reviewed for this study. The species considered corresponded exclusively to pelagial species in agreement with revised information; littoral zooplankton was not considered because the information of these species assemblages is unclear (De los Ríos-Escalante, 2010). The Chilean continental territory has numerous lakes, but in the present study only 40 lakes that have available information were considered, unfortunately in the north of Chile and Patagonia or Patagonian plains, there are many lakes and ponds located mainly in mountain zones with access problems or in very isolated zones (De los Ríos-Escalante, 2010). The data correspond to sampling works in the southern summer (december-february), that is the period with maximum species co-occurrences (Campos et αϊ., 1983, 1988, 1990, 1992a, 1992b; 1994a, 1994b; Villalobos et αϊ., 2003); lakes samples were collected in the daytime, by vertical hauls of 30 m, using a plankton net of 20 cm diameter and 80 μιη mesh size, whereas for ponds samples were collected by filtration of known volume (60-80 L) of water, through 80 μιη mesh net; more details are specified in Soto & De los Ríos (2006) and De los Rios (2008). Data on trophic status, latitude, surface area, maximum depth, conductivity, chlorophyll-α concentration, species number and synonymy of species nomenclature were rectified, based on descriptions in De los Ríos-Escalante (2010). The data obtained on surface area, maximum depth, conductivity, chlorophyll-α (chl-α) concentration and species number were log10 transformed in accordance with the procedures used by Dodson (1991, 1992). These data were used in a correlation matrix by standard parametric correlation analysis (with a Pearson's correlation), and in multiple regression analysis. The goal of these statistical analyses was to identify the potential factors that could regulate the reported species numbers. The statistical analyses were conducted using Statistica 5.0 software.

Low species number were found in two northern Chilean sites (Miscanti and Miniques lagoons), that have high conductivity and in very oligotrophic lakes located at 51°S (Del Toro, Nordsdenkjold, Pehoe and Sarmiento, Table 1). High species number was reported in oligo-mesotrophic lakes located between 38°-42°S (Table 1). The correlation matrix showed direct significant correlations between surface area and maximum depth, and between chl-α concentration and species number (Table 2). Significant negative correlations were identified between conductivity and surface area, and between conductivity and maximum depth (Table 2). The best multiple regression model for the data was statistically significant (Table 2). Multiple regression analysis yielded a direct significant relationship of species number with latitude and chl-α concentration. The regression equation describing this relationship was (P < 0.01):

Y = 0.0255828 + 0.296787X1 + 0.364055X2 where:

Y = species number

X1 = latitude

X2 = log10 (chl-α concentration).


Table 1. Geographical location, surface area (km2), maximum depth (Zmax, m), chlorophyll-α concentration (Chl-α, µg L-1), conductivity (mS cm-1) and species richness (SR) for the sites included in the present study


Table 2. Results of correlation matrix observed for data considered in the present study. In bold are indicate the significant values (P < 0.05). SR: species richness.


These results indicate that a high species number would be found in southern latitudes and high chl-α concentrations (Table 1), whereas a low species number would be found in northern latitudes, probably owing to the high salinity reported at these northern sites (Table 1).

The results of this study indicate that trophic status, expressed by chl-α concentration, plays a regulatory role. This finding agrees with descriptions in the literature of Chilean lakes and ponds along a wide geographical gradient (Soto & Zúñiga, 1991; De los Ríos-Escalante, 2010). The study cited used principal component analysis and indicated that low species numbers occurred in northern Chilean saline lakes. That study, identified as representative species for northern Chilean inland waters the halophilic copepod Boeckeϊϊα poopoensis Marsh, 1906, that is widespread and inhabits between 5-90 g L-1 (Bayly, 1993). The high species number of central Chilean saline lakes (33°S) is associated with mesotrophic or meso-eutrophic status (Schmid-Araya & Zúñiga, 1992). In northern Chile, there are many saline lakes with Αrtemia Leach, 1819 populations, unfortunately, with scanty ecological information (Zúñiga et al., 1999). There is not enough information about central Chilean lakes and reservoirs as well (De los Ríos-Escalante, 2010).

However, the situation is different for the Chilean Patagonia (37°-31°S). In the lakes of this region, chl-α concentration and species number are directly associated (Woelfl, 2007); species number is inversely correlated with latitude (Soto & Zúñiga, 1991; De los Ríos-Escalante, 2010), and chl-α concentration is Campos et al. (1994b) inversely associated with latitude (Soto, 2002). The latter association result from variation in mixing depth, which is directly associated with latitude (Soto, 2002). In this scenario, the mixing depth represents a physical limitation on phytoplankton activity due to light limitation of phytoplankton production (Soto, 2002). Nevertheless, in extreme southern Chile, in specific areas such as Torres del Paine National Park, there are basins containing ultraoligotrophic large lakes with low species number, as well as mesotrophic small lakes and ponds exhibiting broad conductivity gradients and high species numbers (Soto & De los Ríos, 2006). This can explain the direct relationship between species number and latitude observed in the present study. Many of these lakes are located at low altitude above sea level (<500 m a.s.l), with the exception of northern Chilean lakes Miscanti and Miniques (3800 m a.s.l., De los Ríos-Escalante, 2010). Unfortunately, there are too few studies about high mountain lakes for comparison (De los Ríos-Escalante, 2010). These results indicate the existence of a geographical gradient along with environmental heterogeneity that affects the species diversity (De los Ríos-Escalante, 2010). These findings agree with similar results from the Northern Hemisphere (Waide et al., 2003; Willing et al., 2003).

These results are also in agreement with data from lakes and ponds of Argentina (Quirós & Drago, 1999). Argentinean Patagonia has lakes and ponds similar to those in Torres del Paine National Park (Soto & De los Ríos, 2006), namely large oligotrophic lakes and small mesotrophic and eutrophic lagoons and ponds (Modenutti et al., 1998; Balseiro et al., 2001). Furthermore, these results correspond with the ones from New Zealand lakes and ponds (Jeppensen et al., 1997, 2000) and northern Hemisphere lakes, where trophic status is an important regulatory factor of species number (Dodson, 1992; Dodson & Silva Briano, 1996; Dodson et αϊ., 2000, 2005; Pinto-Coelho et al., 2005; Karatayev et al., 2008).

Lakes of North America and Europe exhibit a direct association between species number and surface area (Dodson, 1991, 1992; Dodson & Silva-Briano, 1996). However, this correlation is not observed in southern Chilean lakes (Soto & Zúñiga, 1991). In North America, species number is high in lakes whose maximum depth is between 200-300 m, whereas more shallow lakes exhibit decreased species number (Soto & Zúñiga, 1991). Pinto-Coelho et al. (2005) and Dodson et αϊ. (2000), found a quadratic relationship between species number and primary productivity that is due to oxygen limitation because oxygen, in most productive lakes, can disappear for most of the night when zooplankton compete with bacteria and algae for oxygen (Dodson, 1992). This pattern has not been observed in Chilean lakes.

The Chilean lakes lack invertebrate predators in zooplankton (Soto & Zúñiga, 1991; Woelfl, 2007). Nevertheless another important factor in Argentinean and Chilean Patagonian lakes would be the effect of introduced wild salmonids (Soto et al., 1994, 2006, 2007; Becker et al., 2007; Pascual et al., 2007; Arismendi et al., 2009). These salmonids would affect species number by feeding on large-bodied species such as daphnid cladocerans and calanoid copepods (Modenutti et al., 1998; Reissig et al., 2006). Different conditions would occur in sites without salmonids and at which only native fishes of the genus Gαϊαxiαs were present. These native and introduced fishes would feed on a broad range of zooplankton (Soto et al., 1994), but these sites exhibit high species number despite the occurrence of fish predation on zooplankton (Soto & De los Ríos, 2006). Finally, sites without fishes exhibited high values of zooplankton biomass and species number because there are not exposed to zooplankton predators (Soto et al., 1994; Soto & De los Ríos, 2006). These results do not agree with similar findings for the Argentinean Patagonian counterparts of these sites (Reissig et al., 2006).

As a conclusion, the present study would indicate that the chl-α concentration would be the main regulatory factor of the species number, because it would have low species number under oligotrophic status, and latitude because at southern latitude there are sites with high species number.


The present study was funded by projects DCA-UCT 2007-01 (Dirección General de Investigación, Universidad Católica de Temuco and MECESUP Project UCT 0804. The valuable assistance of Luciano Parra and of the Escuela de Ciencias Ambientales, Universidad Católica de Temuco is likewise acknowledged.



Arismendi, I., D. Soto, B. Penaluna, C. Jara, C. Leal & J. León-Muñoz. 2009. Aquaculture, non-native salmonid invasions and associated declines of native fishes in northern Patagonian lakes. Freshw. Biol., 54: 1154-1147.         [ Links ]

Balseiro, E.G., B.E. Modenutti & C.P. Queimaliños. 2001. Feeding of Boeckella gracilipes (Copepoda, Calanoida) on ciliates and phytoflagellates in an ultraoligotrophic Andean lake. J. Plankton Res., 23: 849-857.         [ Links ]

Bayly, I.A.E. 1993. The athalassic saline waters in Australia and the Altiplano of south America: comparison and historical perspectives. Hydrobiologia, 267: 225-231.         [ Links ]

Becker, L.A., M.A. Pascual & N.G. Basso. 2007. Colonization of the southern Patagonia Ocean by exotic Chinook salmon. Conserv. Biol., 21: 1347-1352.         [ Links ]

Campos, H. 1984. Limnological study of Araucanian lakes (Chile). Verh. Internat. Verein. Theor. Ang. Limnol., 22: 1319-1327.         [ Links ]

Campos, H., W. Steffen, G. Agüero, O. Parra & L. Zúñiga. 1983. Limnological studies in lake Villarrica. Morphometry, physics, chemistry and primary productivity. Arch. Hydrobiol. Suppl., 81: 37-67.         [ Links ]

Campos, H., W. Steffen, G. Agüero, O. Parra & L. Zúñiga. 1988. Limnological study of lake Llanquihue (Chile): morphometry, physics, chemistry and primary productivity. Arch. Hydrobiol. Suppl., 81: 37-67.         [ Links ]

Campos, H., W. Steffen, G. Agüero, O. Parra & L. Zúñiga. 1989. Estudios limnológicos en el lago Puyehue (Chile): morfometría, factores físicos y químicos, plancton y productividad primaria. Med. Amb., 10: 36-53.         [ Links ]

Campos, H., W. Steffen, G. Agüero, O. Parra & L. Zúñiga. 1990. Limnological study of Lake Todos los Santos (Chile): morphometry, physics, chemistry and primary productivity. Arch. Hydrobiol. Suppl., 117: 453-484.         [ Links ]

Campos, H., W. Steffen, G. Agüero, O. Parra & L. Zúñiga. 1992a. Limnological study of Lake Ranco (Chile). Limnologica, 22: 337-353.         [ Links ]

Campos, H., W. Steffen, G. Agüero, O. Parra & L. Zúñiga.1992b. Limnological studies of Lake Rupanco (Chile): Morphometry, physics, chemistry and primary productivity. Arch. Hydrobiol. Suppl., 90: 85-113.         [ Links ]

Campos, H., W. Steffen, G. Agüero, O. Parra & L. Zúñiga. 1994a. Limnological studies of Lake del Toro (Chile) morphometry, physics, chemistry and plankton Arch. Hydrobiol. Suppl., 99: 199-215.         [ Links ]

Campos, H., D. Soto, W. Steffen, G. Agüero, O. Parra & L. Zúñiga. 1994b. Limnological studies of Lake Sarmiento (Chile): a subsaline lake from Chilean Patagonia. Arch. Hydrobiol. Suppl., 99: 217-234.         [ Links ]

De los Ríos, P. 2008. A null model for explain crustacean zooplankton species associations in central and southern Patagonian inland waters. An. Inst. Pat., 36: 25-33.         [ Links ]

De los Ríos-Escalante, P. 2010. Crustacean zooplankton communities in Chilean inland waters. Crustaceana Monographs 12. Brill, Leiden, 109 pp.         [ Links ]

De los Ríos, P. & G. Roa. 2010. Species assemblages of zooplankton crustaceans in mountain shallow ponds of Chile, Parque Cañi. Zoologia, Curitiba, 27: 81-86.         [ Links ]

De los Ríos, P., L. Parra & M. Vega, 2010. Crustacean zooplankton biodiversity in Chilean lakes: two view points for study their regulator factors. In: G.H. Tepper (ed.). Species diversity and extinction, Nova Science Publishers, New York, pp. 405-413.         [ Links ]

Dodson, S.I. 1991. Species richness of crustacean zooplankton in European lakes of different sizes. Verh. Internat. Verein. Theor. Ang. Limnol., 24: 1223-1229.         [ Links ]

Dodson, S.I. 1992. Predicting crustacean zooplankton species richness. Limnol. Oceanogr., 37: 848-856.         [ Links ]

Dodson, S.I. & M. Silva-Briano. 1996. Crustacean zooplankton species richness and associations in reservoirs and ponds of Aguas Calientes, México. Hydrobiologia, 325: 163-172.         [ Links ]

Dodson, S.I., S.E. Arnott & K.L. Cotttingham, 2000. The relationship in lakes communities between primary productivity and species richness. Ecology, 81: 2662-2679.         [ Links ]

Dodson, S.I., R.A. Lillie & S. Will-Wolf. 2005. Land use, water chemistry, aquatic vegetation, and zooplankton community structure of shallow lakes. Ecol. Appl., 15: 1191-1198.         [ Links ]

Jaksic, F. 2001. Ecología de comunidades. Ediciones Pontificia Universidad Católica de Chile, Santiago, 233 pp.         [ Links ]

Jeppensen, E., T.L. Lauridsen, S.F. Mitchell & C.W. Burns. 1997. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? N.Z. J. Mar. Freshw. Res., 31: 163-173.         [ Links ]

Jeppensen, E., T.L. Lauridsen, S.F. Mitchell, K. Christoffersen & C.W. Burns. 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J. Plankton. Res., 22: 951-968.         [ Links ]

Karatayev, A.Y., L.E. Burlakova & S.I. Dodson. 2008. Community analysis of Belarusian lakes: correlations of species diversity with hydrochemistry. Hydrobiologia, 605: 99-112.         [ Links ]

Modenutti, B.E., E.G. Balseiro, C.P. Queimaliños, D.A. Añón Suárez, M. Diéguez & R.J. Albariño. 1998. Structure and dynamics of food webs in Andean lakes. Lake Reserv. Res. Manage., 3: 179-186.         [ Links ]

Pascual, M.A., V. Cussac, B. Dyer, D. Soto, P. Vigliano, S. Ortubay & P. Macchi. 2007. Freshwater fishes of Patagonia in the 21st Century after hundred years of human settlement, species introduction and environmental change. Aquat. Ecosyst. Health Manage., 10: 212-227.         [ Links ]

Pinto-Coelho, R., B. Pinel-Alloul, G. Méthot & K.E. Khavens. 2005. Crustacean species richness in lakes and reservoirs of temperate and tropical regions: variations with trophic status. Can. J. Fish. Aquat. Sci., 62: 348-361.         [ Links ]

Quirós, R. & E. Drago. 1999. The environmental state of Argentinean lakes: an overview. Lake Reserv. Res. Manage., 4: 55-64.         [ Links ]

Reissig, M., C. Trochine, C. Queimaliños, E. Balseiro & B. Modenutti. 2006. Impacts of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biol. Conserv., 132: 437-447.         [ Links ]

Schmid-Araya, J.M. & L.R. Zúñiga. 1992. Zooplankton community structure in two Chilean reservoirs. Arch. Hydrobiol., 123: 305-335.         [ Links ]

Soto, D. 2002. Oligotrophic patterns in southern Chile lakes: the relevance of nutrients and mixing depth. Rev. Chil. Hist. Nat., 75: 377-393.         [ Links ]

Soto, D. & P. De los Ríos. 2006. Trophic status and conductivity as regulators in daphnid dominance and zooplankton assemblages in lakes and ponds of Torres del Paine National Park. Biologia, Bratislava, 61: 541-546.         [ Links ]

Soto, D. & L. Zúñiga. 1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with north American counterparts. Rev. Chil. Hist. Nat., 64: 569-581.         [ Links ]

Soto, D., I. Arismendi, C. Di Prinzio & F. Jara, 2007. Establishment of Chinook salmon (Oncorhynchus tshαwytschα) in Pacific basins of southern South America and its potential ecosystem implications. Rev. Chil. Hist. Nat., 80: 81-98.         [ Links ]

Soto, D., H. Campos, W. Steffen, O. Parra & L. Zúñiga. 1994. The Torres del Paine lake district (Chilean Patagonia): a case of potentially N-limited lakes and ponds. Arch. Hydrobiol., 99: 181-197.         [ Links ]

Soto, D., I. Arismendi, J. González, J. Sanzana, F. Jara, C. Jara, E. Guzmán & A. Lara. 2006. southern Chile, trout and salmon country: invasion patterns and threat for native species. Rev. Chil. Hist. Nat., 79: 97-117.         [ Links ]

Villalobos, L. 1999. Determinación de la capacidad de carga y balance de fósforo y nitrógeno de los lagos Riesco, Los Palos, y Laguna Escondida en la XI región. Informe Final Proyecto FIP-IT/97-39: 77 pp.         [ Links ]

Villalobos, L., S. Woelfl, O. Parra & H. Campos. 2003. Lake Chapo: a base line study of a deep, oligotrophic north Patagonian lake prior to its use for hydroelectricity generation: II. Biological properties. Hydrobiologia, 510: 225-237.         [ Links ]

Waide, M.R., M.R.Willing, C.F. Steiner, G. Mittelbach, L. Gough, S.I. Dodson, G.P. Juday & R. Parmenter. 2003. The relationship between productivity and species richness. Ann. Rev. Ecol., Evol. Syst., 30: 257-300.         [ Links ]

Willing, M.R., D.M. Kaufman & R.D. Stevens. 2003. Latitudinal gradient of biodiversity: pattern, process, scale and synthesis. Ann. Rev. Ecol., Evol. Syst., 34: 273-309.         [ Links ]

Wolfl, S. 1996. Untersuchungen zur zooplanktonstruktur einchliesslich der mikrobiellen gruppen unter Berücksichtigung der mixotrophen ciliaten in zwei südchilenischen Andenfuseen. Universitat Konstanz, Konstanz, 242 pp.         [ Links ]

Woelfl, S. 2007. The distribution of large mixotrophic ciliates (Stentor) in deep north Patagonian lakes (Chile): first results. Limnologica, 37: 28-36.         [ Links ]

Zúñiga, O., R. Wilson, F. Amat & F. Hontoria. 1999. Distribution and characterization of Chilean populations of the brine shrimp Artemiα (Crustacea, Branchiopoda, Anostraca). Int. J. Salt Lake Res., 8: 23-40.         [ Links ]


Received: 22 June 2012; Accepted: 12 June 2013


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License