SciELO - Scientific Electronic Library Online

vol.41 issue5Effect of temperature on survival of embryos of puye Galaxias maculatus (Jenyns, 1842)Role of temperature in the reproductive cycle of Thais chocolata (Gastropoda, Muricidae) in Chanavaya, Tarapacá, Chile author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Latin american journal of aquatic research

On-line version ISSN 0718-560X

Lat. Am. J. Aquat. Res. vol.41 no.5 Valparaíso Nov. 2013 

Research Article


Zoogeography of Chilean inland water crustaceans

Zoogeografía de crustáceos de aguas continentales chilenas


Patricio De los Ríos-Escalante1, 2, Jaime Meruane3, María Cristina Morales3 Erich Rudolph4, Carmen Fuentealba5 & Geoff Boxshall6

1 Escuela de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco P.O. Box 15-D, Temuco, Chile
Núcleo de Estudios Ambientales, Universidad Católica de Temuco, Temuco, Chile
Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte
P.O. Box 117, Coquimbo, Chile
Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos
P.O. Box 933, Osorno, Chile
Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
Natural History Museum, Department of Life Sciences Cromwell Road, London, SW7 5BD, United Kingdom
Corresponding author: Patricio De los Ríos-Escalante (

ABSTRACT. The Chilean inland water crustaceans are characterized by a combination of endemic and cosmopolitan species: some occur throughout the territory of continental Chile, while others are restricted to specific latitudinal regions. This study examined the zoogeographical patterns exhibited by Chilean inland water crustaceans. We considered six regions: Northern Chile (18°-27°S), North-Central Chile (27°-30°S), Central Chile (30°-38°S), Northern Patagonia (38°-41°S), Central Patagonia (41°-51°S), and Southern Patagonia (51°-55°S), and these were identified based on literature records of inland water crustaceans. The classification analysis generated dendrograms for the following groups considered in this categories: all inland water crustaceans (Branchiopoda, Copepoda and Malacostraca), the zooplanktonic crustaceans (Branchiopoda and Copepoda), the Malacostraca alone, and each group separately. Analysis of total data and of the zooplankton group taxa alone revealed the existence of a main grouping consisting of the three Patagonian zones plus Central Chile, that is distinct from that of Northern Chile and North-Central Chile. Similarly, analysis of the malacostracan data revealed the existence of two main groups, one comprising the three Patagonian zones plus Central Chile, contrasted with a second group of Northern and North-Central Chile combined. Our results are in agreement with other panbiogeographical studies of South American crustaceans and insects. Possible factors responsible for generating this pattern are the dispersal and colonization potential of zooplanktonic crustaceans and the marked endemism of the malacostracans.

Keywords: Branchiopoda, Copepoda, Amphipoda, Decapoda, endemism, dispersal, Chilean inland waters.

RESUMEN. Los crustáceos de aguas continentales chilenas se caracterizan por una combinación de especies endémicas y cosmopolitas, algunas se encuentran a lo largo del territorio de Chile continental, mientras que otras están restringidas a regiones latitudinales específicas. El presente estudio examinó los patrones zoogeográficos exhibidos por crustáceos de aguas continentales chilenas. Se consideraron seis regiones: Norte de Chile (18°-27°S), Norte-Central de Chile (27°-30°S), Chile Central (30°-38°S), Norte de la Patagonia (38°-41°S), Patagonia Central (41°-51°S), y Sur de la Patagonia (51°-55°S), identificadas sobre la base de registros de la literatura de crustáceos de aguas continentales. Los análisis de clasificación generaron dendrogramas para las siguientes agrupaciones consideradas en estas categorías: todas las especies de crustáceos de aguas continentales (Branchiopoda, Copepoda y Malacostraca), crustáceos zooplanctónicos (Branchiopoda y Copepoda), sólo Malacostraca, y cada grupo por separado. El análisis de todos los grupos y de los grupos zooplanctónicos reveló la existencia de un gran grupo con las tres regiones de la Patagonia más Chile central, diferente al de la zona norte y norte-central de Chile. De manera similar el análisis de datos de malacostracos reveló la existencia de dos grandes grupos, uno con las tres zonas de la Patagonia y Chile central, contrastado con un segundo grupo conformado por la zona norte y norte-central. Estos resultados concuerdan con estudios panbiogeográficos de crustáceos e insectos sudamericanos. Como posibles factores responsables podrían ser la dispersión y potencial colonización de crustáceos zooplanctónicos y el marcado endemismo de los malacostracos.

Palabras clave: Branchiopoda, Copepoda, Amphipoda, Decapoda, endemismo, dispersión, aguas continentales chilenas.



Chilean inland water crustaceans are characterized by their marked endemism at different spatial scales: there are widespread species, distributed along Chilean continental territory, and there are other species restricted to narrow geographical ranges (Jara et al., 2006; Villalobos, 2006; De los Ríos-Escalante, 2010). Species exhibiting such marked endemism are at risk of extinction, due to habitat fragmentation or habitat alteration, as has been reported for decapods by Jara et al. (2006).

The geographical patterns of Chilean inland water crustaceans might reflect habitat heterogeneity. Thus De los Ríos-Escalante (2010), based on Niemeyer & Cereceda (1984) who used climatic, topographic and hydrological characteristics, proposed the following four regions in according to a zoogeographical review of inland water Branchiopods and Copepods: Northern Chile (18º-27ºS); Central Chile (27º-37ºS), Northern and Central Patagonia (37º-51ºS) and Southern Patagonia (51º-55ºS). For both branchiopods and copepods species were found that were restricted to a specific geographical range, as well as more widespread species (De los Ríos-Escalante, 2010).

The aim of the present study is to undertake a zoogeographical analysis of Chilean inland water crustaceans (Branchiopoda, Copepoda and Malacostraca) in continental Chilean territory in order to characterise their distribution patterns.


Data on inland water crustaceans were obtained from literature records (Araya & Zúñiga, 1985; Bayly, 1992; González, 2003; De los Ríos-Escalante, 2010; De los Ríos-Escalante et al., 2012; Jara, in press; Morales & Meruane in press; Rudolph, in press), and these were collated into a presence-absence matrix (Table 1, Fig. 1), with respect to the following six geographical zones: 1) Northern Chile: 18°-27°S, 2) North-Central Chile: 27°-30°S, Central Chile: 30°-38°S, Northern Patagonia: 38°-41°S; Central Patagonia: 41°-51°S, and Southern Patagonia: 51°-55°S. These data were explored by cluster analysis (Bray-Curtis with single link), using the Biodiversity Pro software package (McAlleece et al., 1997). Data were analyzed considering the following categories: 1) All crustacean species, 2) Branchiopoda and Copepoda species, and 3) Malacostracan species.


Table 1. List of inland water crustacean species reported for continental Chilean territory (0: absence, 1: presence).


Figure 1. Map of continental Chilean territory showing the hydrographical areas utilized by the author.


In a second analytical step, an external area zero was added to the species presence-absence matrix to codify for rooting the cladogram (Rosen & Smith, 1998; Morrone, 2004; Fuentealba et al., 2010). The most parsimonious cladograms were found by heuristic search with 1000 replicates; replicates of 100 initial trees were used with an output of up to 10000 trees were calculated using reiterative bisection and multiple reconnection (multiple TBR + TBR). The strict consensus tree was calculated from heuristic search. Node support was evaluated by bootstrap analysis (Felsenstein, 1985). Bootstrap support values were estimated (with 1000 replicates) for selected branches as endemism areas, using the Nona program (Goloboff, 1998) within Winclada (Nixon, 2002). It was applied to one analysis for understanding endemicity patterns and similarities between studied areas.


Cluster analysis revealed for all crustacean species and for Branchiopoda and Copepoda, the existence of a main grouping comprising the three Patagonian zones plus Central Chile, that is separate from Northern and North-Central Chile (Figs. 2 and 3). Similarly, for malacostracan species, the analysis revealed the existence of two main groupings, one consisting of the three Patagonian zones plus Central Chile, and the other comprising Northern and North-Central Chile (Fig. 4). Analysis of the decapods identifies an isolated main group comprising Northern and North-Central Chile, which are very similar, and a second major grouping of Central Chile with Northern and Central Patagonia (Fig. 5).


Figure 2. Dendrogram of all inland water crustaceans considered in the present study.



Figure 3. Dendrogram of inland water crustaceans zooplanktonic (Branchiopoda and Copepoda) considered in the present study.


Figure 4. Dendrogram of inland water Malacostraca considered in the present study.


Figure 5. Dendrogram of inland water Decapoda considered in the present study.


The analysis of amphipods revealed one main group, comprising Central Chile with Northern and Central Patagonia, and this is relatively similar to Southern Patagonia. This grouping is separated from both of the two northern regions of Chile (Fig. 6). For cladocerans, there was a main grouping of Central Chile with Northern and Central Patagonia, and in decreasing order of similarity, Southern Patagonia, and Northern and North-Central Chile (Fig. 7). Finally, for copepods we found two main groupings (Central Chile-Northern Patagonia and Central-Southern Patagonia), that is distinct from the closely similar Northern and North-Central Chile (Fig. 8).


Figure 6. Dendogram of inland water Amphipoda considered in the present study


Figure 7. Dendogram of inland water Cladocera considered in the present study.


Figure 8. Dendogram of inland water Copepoda considered in the present study.


The parsimony endemicity analysis generated an exclusive cladogram with 111 steps, a consistency index of 0.84, and a retention index of 0.58. The bootstrap values obtained varied between 0.55 and 0.98 for different areas of endemism (Fig. 9). The cladogram depicts two main endemism areas represented by Central and Southern Patagonia and by Northern, North-Central and Central Chile and Northern Patagonia (Fig. 9).


Figure 9. Cladogram obtained from the parsimony analysis of endemicity of Chilean inland water crustaceans. Bootstrap values are indicated on the nodes.



The results for all crustacean species and for the grouping of Branchiopoda and Copepoda showed a gradual difference between Patagonian species and species located in northern regions, and are in agreement with the panbiogeographical analysis for centropagid copepods of Menu-Marque et al. (2000), who found widespread species in combination with species showing a very restricted geographical distribution. One possible factor would be the high dispersal capability of Branchiopoda and Copepoda (Menu-Marque et al., 2000; De los Ríos-Escalante, 2010). Malacostracans are different: in the present study we found a marked difference between Patagonian species and Northern species in agreement with the panbiogeographical analyses of the amphipod genus Hyalella (De los Ríos-Escalante et al., 2012), and of inland water decapods (Morrone & Lopretto, 1994). A similar zoogeographical pattern was observed in the genus Aegla (Perez-Lozada et al., 2002, 2004, 2009). This difference may be explained in part by the presence in Patagonia, of Southern South American and Subantarctic species (Pugh et al., 2002; Dos Santos et al., 2008).

An important factor here is that Southern Patagonia has a few subtropical species combined with Subantarctic species (Pugh et al., 2002; Dos Santos et al., 2008), whereas Northern Chile exemplifies a different faunal region (Menu-Marque et al., 2000; Morrone, 2006; De los Ríos-Escalante et al., 2012). In addition, in Chile, the Andes mountains represent a barrier that limits or prevents species dispersal between the two sides of the mountains and explains the marked differences in species reported from zones including Andean mountains (Morrone, 2006), compared to Southern Patagonia, where the mountains have practically disappeared and where it is possible to find many common species (Menu-Marque et al., 2000). Following this scenario, may help to explain the marked differences in species reported in western and eastern South America (Soto & Zúñiga, 1991; Morrone & Lopretto, 1994; Menu-Marque et al., 2000; Oyanedel et al., 2008).


This study was funded by projects MECESUP 0804, DID-UACH d2001-11, CONICYT-Chile (Doctoral Fellowship and Grant for support Doctoral Thesis) and the Research and Postgraduate Directorate of the Catholic University of Temuco.



Araya, J.M. & L.R. Zúñiga. 1985. Manual taxonómico del zooplancton lacustre de Chile. Bol. Limnol., 8: 1169.         [ Links ]

Bayly, I.A.E. 1992. Fusion of the genera Boeckella and Pseudoboeckella and a revision of their species from South America and Subantarctic islands. Rev. Chil. Hist. Nat., 65: 17-63.         [ Links ]

De los Ríos-Escalante, P. 2010. Crustacean zooplankton communities in Chilean inland waters. Crustaceana Monogr., 12: 1-109.         [ Links ]

De los Ríos-Escalante, P., J.J. Morrone & R. Rivera. 2012. Distributional patters of the South American species of Hyalella (Amphipoda, Hyalellidae). Gayana, 76: 153-161.         [ Links ]

Dos Santos, A., P. Araujo & C. Bond-Buckup. 2008. New species and new reports of Hyalella (Crustacea, Amphipoda, Dogielinotidae) from Argentina. Zootaxa, 1760: 24-36.         [ Links ]

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783-791.         [ Links ]

Fuentealba, C., R. Figueroa & J.J. Morrone. 2010. Análisis de endemismo de moluscos dulceacuícolas de Chile. Rev. Chil. Hist. Nat., 83: 289-298.         [ Links ]

Goloboff, P. 1998. NONA ver. 2.0. Available from Reviewed: 12 October 2012.         [ Links ]

González, E. 2003. The freshwater amphipods Hyalella Smith, 1874 in Chile (Crustacea: Amphipoda). Rev. Chil. Hist. Nat., 76: 623-637.         [ Links ]

Jara, C. A checklist of the Chilean species of the genus Aegla (Decapoda: Anomura: Aeglidae). Crustaceana (In press).         [ Links ]

Jara, C., E. Rudolph & E. González. 2006. Current state of freshwater malacostracans of Chile. Gayana, 70: 40-49.         [ Links ]

McAlleece, N., J.D.G. Gage, P.J.D. Lambshead & G.L.J. Paterson. 1997. BioDiversity Professional statistics analysis software. Jointly developed by the Scottish Association for Marine Science and the Natural History Museum London.         [ Links ]

Menu-Marque, S., J.J. Morrone & C. Locascio de Mitrovich. 2000. Distributional patterns of the South American species of Boeckella (Copepoda: Centropagidae): a track analysis. J. Crust. Biol., 20: 262-272.         [ Links ]

Morales, M.C. & J. Meruane. Northern river prawn Cryphiops caementarius: chronology of the research between 1958-2008. Biology, distribution, life cycle and population status. Crustaceana (In press).         [ Links ]

Morrone, J.J. 2004. On the identification of areas of endemism. Syst. Biol., 43: 438-441.         [ Links ]

Morrone, J.J. 2006. Biogeographic areas and transition zones of Latin America and the Caribean islands based on panbiogeographical and cladistic analysis of the entomofauna. Ann. Rev. Entomol., 51: 467-494.         [ Links ]

Morrone, J.J. & L. Lopretto. 1994. Distributional patterns of freshwater Decapoda (Crustacea: Malacostraca) in southern South America: a panbiogeographic approach. J. Biogeogr., 21: 97-109.         [ Links ]

Niemeyer, H. & P. Cereceda. 1984. Geografía de Chile. Hidrografía. Instituto Geográfico Militar, Santiago, 320 pp.         [ Links ]

Nixon, K.C. 2002. Winclada ver. 1.000. Available from: Reviewed: 22 September 2012.         [ Links ]

Oyanedel, J.P., C. Vega-Retter, S. Scott, L.F. Hinojosa & R. Ramos-Jiliberto. 2008. Finding patterns of distribution for freshwater phytoplankton, zooplankton and fish by mean parsinomy analysis of endemicity. Rev. Chil. Hist. Nat., 81: 185-204.         [ Links ]

Perez-Lozada, M., G. Bond-Buckup, C.G. Jara & K.A. Crandall. 2002. Phylogenetic relationships among the species of Aegla (Anomura: Aeglidae) freshwater crabs. J. Crust. Biol., 22: 304-313.         [ Links ]

Perez-Lozada, M., G. Bond-Buckup, C.G. Jara & K.A. Crandall. 2004. Molecular systematic and biogeography of the southern South American freshwater crabs Aegla (Decapoda: Anomura: Aeglidae) using multiple heuristic three search approaches. Syst. Biol., 55: 767-780.         [ Links ]

Perez-Lozada, M., G. Bond-Buckup, C.G. Jara & K.A. Crandall. 2009. Conservation assessment of southern South American freshwater ecoregion of the basis of the distribution and genetic diversity of crabs from the genus Aegla. Conserv. Biol., 23: 692-672.         [ Links ]

Pugh, P.J.A., H.J.G. Dartnall & S.J. Mcinnes. 2002. The non marine crustacean of Antarctica and the island of the southern ocean: biodiversity and biogeography. J. Nat. Hist., 36: 1047-1103.         [ Links ]

Rosen, B.R. & A.B. Smith. 1998. Tectonics from fossils? Analysis of reef-coral and sea-urchin distributions from late Cretaceous to Recent using a new method. In: G. Audley-Charles & A. Allam (eds.). Gondwana and thethys. Oxford University Press, Oxford, pp. 275-301.         [ Links ]

Rudolph, E. A checklist of Chilean Parastacidae. Crustaceana (In press).         [ Links ]

Soto, D. & L.R. Zúñiga. 1991. Zooplankton assemblages of temperate lakes: a comparison with North American counterparts. Rev. Chil. Hist. Nat., 64: 659-581.         [ Links ]

Villalobos, L. 2006. Current state of knowledge of freshwater malacostracans of Chile. Gayana, 70: 31-39.         [ Links ]


Received: 27 December 2012; Accepted: 26 August 2013


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License