SciELO - Scientific Electronic Library Online

 
vol.42 issue5Fish larvae retention linked to abrupt bathymetry at Mejillones Bay (northern Chile) during coastal upwelling eventsCocolithophores in marine sediments off the western entrance of the Strait of Magellan reveal changes in productivity over the past 30,000 years author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Latin american journal of aquatic research

On-line version ISSN 0718-560X

Lat. Am. J. Aquat. Res. vol.42 no.5 Valparaíso Nov. 2014

http://dx.doi.org/10.3856/vol42-issue5-fulltext-7 

Research Article

 

Oceanographic mechanisms that possibly explain dominance of neritic-tropical zooplankton species assemblages around the Islas Marías Archipelago, Mexico

Procesos oceanográficos que posiblemente explican la dominancia de asociaciones de especies de zooplancton nerítico tropical alrededor del archipiélago de Islas Marías, México

 

Jaime Gómez-Gutiérrez1, René Funes-Rodríguez1, Karmina Arroyo-Ramírez1,2 Carlos Armando Sánchez-Ortíz3, Juan Ramón Beltrán-Castro1, Sergio Hernández-Trujillo1 Ricardo Palomares-García1, Octavio Aburto-Oropeza4 & Exequiel Ezcurra5

1 Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas Av. Instituto Politécnico Nacional s/n, Col. Palo de Santa Rita, CP 23096 La Paz, Baja California Sur, México
2
Instituto Tecnológico Superior de Mulegé, Loma de Los Frailes s/n, Col. Centro
Santa Rosalia, CP 23920, Baja California Sur, México
3
Departamento de Biología Marina, Universidad Autónoma de Baja California Sur Carretera al Sur Km 5.5, La Paz, Baja California Sur, CP 23081, México
4 Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography
La Jolla, California, USA
5
Department of Botany and Plant Sciences, University of California Riverside
CA 92521-0147, USA
Corresponding author: Jaime Gómez-Gutiérrez (jagomezg@ipn.mx)


ABSTRACT. The nearshore zooplankton species assemblage, identified per taxonomic groups (20) and per species for 12 selected groups, was analyzed from samples collected during November 2010 at four volcanic islands of the Islas Marías Archipelago (IMA), located 90-120 km offshore Nayarit, Mexico. From chlorophyll-a concentration and zooplankton biovolume perspective mesotrophic conditions prevailed in comparison with the Gulf of California during November. Crustaceans numerically dominated the zooplankton assemblage (92.3%) [Copepoda (79.2%), Decapoda larvae (4.7%), Cladocera (3.7%), Mysidacea (2.7%), and Euphausiacea (2.0%)]. The other 15 taxonomic groups (7.7% combined) accounted each one less than 1.5% of the relative abundance. Species richness of selected taxa (~56%>) included 259 taxa (121 identified to species, 117 to genus, and 21 not identified). Tropical species from neritic affinity clearly dominated zooplankton assemblage around IMA. Five tropical Copepoda species [Calanopia minor (Dana), Clausocalanus jobei Frost & Fleminger, Acrocalanus gibber Giesbrecht, Canthocalanus pauper (Giesbrecht), and Centropages furcatus (Dana)], a cladoceran Pseudevadne tergestina (Claus), and a Mysidacea species (Mysidium reckettsi Harrison & Bowman) dominated the zooplankton assemblage (accounting about 55% of total abundance of the identified species). Except C. furcatus, all these species are not abundant at oceanic regions of the central and northern Gulf of California. The similarity of multiple neritic and tropical species in the zooplankton assemblage from IMA and Cape Corrientes suggests strong coastal-insular plankton connectivity. Episodic current plumes associated with anomalous intense rivers discharge during rainy years, eddies generated by coastal upwelling event that move offshore, and northward regional oceanic circulation are the most likely mesoscale oceanographic processes that cause costal tropical zooplankton drift enhancing coastal-Archipelago species connectivity in this region.

Keywords: zooplankton, assemblage, zooplankton biovolume, neritic, tropical, Islas Marías Archipelago, Mexico.


RESUMEN. Se estudió la estructura comunitaria de zooplancton de 20 grupos taxonómicos (12 de los cuales fueron identificados a nivel de especie) recolectados en el archipiélago de Islas Marías (IMA), ubicado a 90-120 km de la costa de Nayarit, México, durante noviembre 2010. Desde la perspectiva de la concentración de clorofila-a y el biovolumen de zooplancton prevalecen condiciones mesotróficas en comparación con el resto del golfo de California durante noviembre. El zooplancton fue numéricamente dominado por crustáceos (92,3%) [Copepoda (79,2%), larvas de Decapoda (4,7%), Cladocera (3,7%), Mysidacea (2,7%) y Euphausiacea (2,0%)]. Los otros 15 grupos taxonómicos (7,7% combinados) representaron cada uno menos del 1,5% de la abundancia relativa. La riqueza de especies de los taxa seleccionados (~56%) incluyó 259 taxones (121 identificados a nivel de especie, 117 a nivel de género y 21 no identificados). Las especies tropicales de afinidad nerítica claramente dominaron la estructura de la comunidad de zooplancton. Cinco especies de copépodos tropicales [Calanopia minor (Dana), Clausocalanus jobei Frost y Fleminger, Acrocalanus gibber Giesbrecht, Canthocalanus pauper (Giesbrecht) y Centropages furcatus (Dana)], un cladócero Pseudevadne tergestina (Claus), y una especie de Mysidacea (Mysidium reckettsi Harrison & Bowman) dominaron en abundancia la asociación del zooplancton insular (55% del total de las especies identificadas). A excepción de C. furcatus, todas éstas especies no son particularmente abundantes en las regiones oceánicas del centro y norte del Golfo de California. La presencia de múltiples especies neríticas de zooplancton de afinidad tropical entre las asociaciones de zooplancton de IMA y la costa del Cabo Corrientes sugiere una intensa conectividad de plancton entre los ambientes costero e insular. Los procesos oceanográficos de mesoescala más probables que favorecen esta conectividad son las episódicas plumas asociadas con anomalías de intensa descarga de los ríos durante los años lluviosos, los remolinos generados por surgencia costera que se mueven hacia aguas oceánicas y la circulación hacia los polos de esta región.

Palabras clave: zooplancton, asociación, biovolumen zooplanctónico, nerítico, tropical, archipiélago Islas Marías, México.


 

INTRODUCTION

Offshore zooplankton assemblages from the mouth of the Gulf of California and coastal Cape Corrientes region have been studied focused only on specific taxonomic groups, such as Copepoda (Chen, 1986; Jiménez-Pérez & Lara-Lara, 1988; Hernández-Trujillo & Esquivel-Herrera, 1989; Gómez-Gutiérrez & Hernández-Trujillo, 1994; López-Ibarra, 2008; Palomares-García et al., 2013), Euphausiacea (krill) (Mundhenke, 1969; Brinton, 1979; Brinton & Townsend, 1980; Gómez-Gutiérrez & Hernández-Trujillo, 1994; Färber-Lorda et al., 2010; Ambríz-Arreola et al., 2012), Amphipoda (Siegel-Causey, 1982; Gasca & Franco-Gordo, 2008; Gasca et al., 2012), Mysidacea (Harrison & Bowman, 1987; Price, 2004), Decapoda larvae (Naranjo et al., 2006), Chaetognatha (Alvariño, 1963, 1969; Ruiz-Boijseauneau et al., 2004), and ichthyoplankton (fish larvae) (Franco-Gordo et al., 1999, 2002, 2004; Aceves-Medina et al., 2003, 2004; Siordia-Cermeño et al., 2006; Silva-Segundo et al., 2008; Vilchis et al., 2009; León-Chávez et al., 2010, Avendaño-Ibarra et al., 2013, 2014). The rest of the zooplankton taxonomic groups are generally little known for Mexican waters (Brinton et al., 1986). Most recent efforts to understand the zooplankton assemblages have only identified relative abundance of broad zooplankton taxonomic groups or few selected species in the central and southern Gulf of California region (Siordia-Cermeño & Sánchez-Velasco, 2004, 2006; Vicencio-Aguilar & Fernández-Alamo, 2005). Fernández-Álamo & Färber-Lorda (2006) published the so far most comprehensive review about zooplankton biovolume, zoogeography, ecology, and species composition from the offshore Tropical Eastern Pacific zoogeographic region (TEP); they made emphasis on the lack of zooplankton information from tropical Mexican islands. The zooplankton assemblage represents a prominent food source for many benthic and demersal planktophagous predators that inhabit along the coastal habitats of Islas Marías Archipelago (IMA), including rocky and coral reefs, rhodolith beds, rocky pinnacles, and soft-bottom embayments (Erisman et al., 2011). Embryonic and larval stages of numerous invertebrates and bony fish assemblages disperse and inhabit as merozooplankton and thychoplankton around the IMA.

The Islas Marías Archipelago includes four volcanic islands (María Magdalena, María Cleofas, Isla Madre, and San Juanito) located near the slope of the continental shelf, about 90-120 km offshore the coast of Nayarit state, Mexico. The Equatorial waters and water properties from the Gulf of California influence the insular waters from this Archipelago. The oceanic circulation around the islands is associated to episodic current plumes from the continental margin (Martínez-Flores et al., 2011), large cyclonic and anticyclonic eddies from Cabo Corrientes region (Kurczyn et al., 2012; Pantoja et al., 2012), bottom topography (Kurian et al., 2011), local wind-forcing (Pares-Sierra et al., 1993), coastal trapped waves of equatorial origin (Zamudio et al., 2001, 2007) and oceanic currents (Lavín et al., 2006). These processes also modify local production and may influence retention and transport of zooplankton in the TEP region (Färber-Lorda et al., 2004, 2010; Fernández-Álamo & Färber-Lorda, 2006; León-Chávez et al., 2010). Because the IMA lies near the intersection of the Cortez and the Panamic biogeographic provinces (Robertson & Cramer, 2009; Erisman et al., 2011) featured with mesotrophic conditions throughout the year (<0.7 mg Chl-a m-3 and low zooplankton biovolume <100 mL 1000 m-3) (Fernández-Álamo & Färber-Lorda, 2006; López-Sandoval et al., 2009), it is expected that tropical zoogeographic affinity dominate these islands, but its oceanic or neritic origins still remains unknown.

The present study includes two objectives: 1) to describe, for the first time, the IMA near-shore zooplankton assemblage as identified per taxonomic groups and per species for 12 selected groups for which their taxonomy is relatively well known for the TEP [Copepoda, Decapoda, Cladocera, Decapoda, Euphausiacea, Mysidacea, Amphipoda, Siphonophora, Chaetognatha, Pteropoda, Appendicularia, Cephalopoda, and Pisces (fish larvae)] and 2) to compare zooplankton species structure from IMA with offshore waters of the Gulf of California mouth and the continental coast of Cape Corrientes zooplankton species, to infer if the zooplankton of the island is numerically dominated by oceanic or neritic affinity species, and also to speculate about the potential connectivity processes that maintains benthic and neritic fauna in the Archipelago. Thus, we did the characterization of the most abundant species and community structure outlining a baseline for further use as inventory of zooplankton fauna from the Islas Marías Archipelago. This is relevant because in 2000 the Islas Marías Archipelago was declared a Biosphere Reserve and in 2007 the UNESCO included it as a Natural World Heritage Serial Site (Erisman et al., 2011); thus a zooplankton checklist, zooplankton biovolume, and understanding how the zooplankton assemblages are structured, may be useful for conservation and management purposes for this archipelago.

MATERIALS AND METHODS

During a cruise for censing the communities of reef fish and benthic invertebrates of IMA, carried out in November 2010 (Erisman et al., 2011), we collected zooplankton samples to investigate the zooplankton species composition from the four volcanic islands. Performing biological studies in the IMA is difficult because it requires government permission given the restricted access and no commercial fishery in the region due to the presence of a Federal Prison colony in Isla Madre (established since 1905). Thus, this study represents an outstanding opportunity to explore zooplankton diversity around the Islas Marías Archipelago.

Satellite sea surface temperature and chlorophyll-a concentration

Satellite 7-days sea surface temperature composite obtained from MODIS-Terra (Moderate Resolution Imaging Spectral-Radiometer), with a 9 km spatial resolution (http://oceandata.sci.gsfc.nasa.gov/MODISA/Mapped/) and satellite 7-days composite sea surface chlorophyll-a concentration (mg m-3) images from SeaWiFS with 4 km resolution maps (http://oceancolor.gsfc.nasa.gob/SeaWiFS) were used to create SST and Chl-a distribution maps around IMA region (13-19 November, 2010).

Zooplankton sampling

As part of a diving census survey and collections of coastal benthic, demersal, and pelagic fishes (Erisman et al., 2011), and benthic invertebrate community structure (mainly Octocorallia, Echinodermata, Mollusca and Crustacea: mostly Decapoda and Stomatopoda) (Sánchez-Ortíz et al., unpublished data), the zooplankton community structure of 11 sampling sites was studied at Islas Marías Archipelago, during November 13-21, 2010 (Fig. 1). Near sea surface zooplankton samples (<2 m depth) were collected in rocky reefs, rhodolith beds, and sandy bottom habitats, with seafloor depth ranging typically between 15-30 m. Near-surface epipelagic zooplankton was collected with a conical zooplankton net (0.6 m ring diameter; 333 urn mesh net) fitted with a General Oceanic digital flow meter to estimate water volume filtered by the net (Smith & Richardson, 1977). The cruise was done with the touristic vessel Rocío del Mar and the net was towed with a Zodiac boat, following a wide semicircular trajectory during 10 min. The location of the zooplankton samples was determined with a GPS. Zooplankton samples were preserved with 96% ethanol with a complete ethanol replacement after 24 h of preservation. Zooplankton biovolume was determined using the volume displacement method (Smith & Richardson, 1977). For comparative purposes, the zooplankton biovolume collected at IMA during November 2010 was compared with near surface zooplankton tows collected on board the R/V El Puma (UNAM) with the collection method using 333 and 500 um mesh net during 2005 (November 19-26), and 2007 (January 13-27; July 20 through August 2) at the central and northern Gulf of California regions (26-30°N) (Tremblay et al., 2010) (Table 1).

 

Figure 1. Surface zooplankton sampling stations collected during November
2010 at Islas Marías Archipelago in the Mexican Tropical Pacific, Mexico.

 

Table 1. Comparison of zooplankton biovolume (mL 1000 m-3) collected with surface
horizontal tows at Islas Marías Archipelago (IMA) during November 2010 and samples
collected in the central and northern part of the Gulf of California during November 2005,
January and July-August 2007.

 

Sample analysis

Fish eggs and larvae (ichthyoplankton) was sorted out, counted and analyzed from the entire zooplankton sample. The rest of the zooplankton taxonomic groups were sorted, identified, and counted from 10 mL aliquots obtained with a calibrated Hensen Stempel pippette from a standard 240 mL bottle. We first identified all the zooplankton per large taxonomic groups (typically Order), and later several taxonomic experts helped us to identify species for the 12 selected zooplankton groups: Copepoda, Cladocera, Decapoda, Euphausiacea, Amphipoda, Mysidacea, Siphonophora, Chaetognatha, Pteropoda, Appendicularia, Cephalopoda, and Pisces (fish larvae). A second 10 mL aliquot was analyzed to count zooplankton per taxonomic groups. The abundance of organisms detected in the second aliquot, not observed in the first 10 mL, was standardized to a total 20 mL aliquot size sample. The abundance of each taxonomic zooplankton group and each species identified was standardized to number of individuals per 1000 m-3 using standard methods (Smith & Richardson, 1977).

Twelve zooplankton taxonomic groups were identified at the species level using as principal sources, but not exclusively, standard taxonomic keys for Copepoda (Palomares-García et al., 1998; Razouls et al., 2005-2012, http://copepodes.obs-banyuls.fr/en/), Euphausiacea (Baker et al., 1990; Brinton et al., 2000), Mysidacea (Tattersall, 1951; Ii, 1964; Mauchline, 1980; Harrison & Bowman, 1987; Deprez et al., 2005; NeMys webpage http://nemys.ugent.be/; Murano & Fukuoka, 2008), Decapoda (Williamson, 1957a, 1957b, 1960, 1962, 1967, 1983; MacDonald et al., 1957; Pike & Williamson, 1972; Fichman & Williamson, 1978; Albornoz & Wertmann, 1997; Anosov, 2000; Dos Santos & Lindley, 2001; Puls, 2001; Dos Santos & González-Gordillo, 2004), Chaetognatha (Alvariño, 1963, 1967; Casanova, 1999), Pteropoda (Seapy, 1990; Spoel, 1996; Spoel et al., 1997; Angulo-Campillo, 2009), Hyperiid amphipods (Vinogradov et al., 1996; Zeidler, 2006), and ichthyoplankton (Brogan, 1992; Moser, 1996; Beltran-León & Rios-Herrera, 2000). A relative large proportion of specimens, particularly fish and decapod larvae, were not identified to species, because their larvae have not been described yet.

Abundance per taxonomic group, and abundance per species was log10 (x+1) transformed to decrease abundance variability for statistical analysis (McCune et al., 2002). To detect spatial community structure similarities among zooplankton samples per sampling station and presence/absence of each species, a Hierarchical two-way Cluster Analysis was done using the Bray Curtis link method and Flexible Beta distance (selected value -0.250) (using a matrix coding of relative abundance per species) calculated with the PC-ORD software (version 6.0; http://home.centurytel.net/~mjm/pcordwin.htm) (McCune et al., 2002).

RESULTS

Satellite sea surface temperature and chlorophyll-a concentration

During November 2010, sea surface temperature (SST) was relatively warm (25-26.6°C) and showed a clear longitudinal gradient with the highest SST along the Southwest coast of the Islas Marías Archipelago (IMA) and the lowest at the Northeast area of María Madre Island (Fig. 2a). Sea surface chlorophyll-a (Chl-a) concentration was considerably low (<0.42 mg m-3) at all the study area; showing the relatively the lowest concentration offshore along the western coast of the IMA and high values along the eastern coast of the archipelago (Fig. 2b). These relatively high SST and low Chl-a concentrations represent mesotrophic conditions.

 

Figure 2. Satellite a) sea surface temperature (°C) MODIS and b) chlorophyll-a
concentration SeaWIFS (mg Chl-a m3) recorded during November 2010 at the
Islas Marías Archipelago.

 

Zooplankton biovolume

Near surface zooplankton biovolume (ZB) was <159 mL 1000 m-3 with relatively small spatial variability (Mean = 63 mL 1000 m-3; standard error = 12 mL 1000 m-3, map not showed) during November 2010 in the Islas Marías Archipelago. IMA near surface zooplankton biovolume ranged between 2.2 and 17.4 times lower than those collected in the central and northern regions of the Gulf of California during November 2005 and January and July 2007 (Table 1). These comparisons, indicate that the near-shore habitat of the IMA could be considered as a mesotrophic coastal habitat during the sampled period.

Zooplankton identified per taxonomic groups

Zooplankton assemblage in the near-shore habitat of IMA included 13 holoplanktonic and 7 meroplanktonic taxonomic groups. Crustaceans, numerically dominated total zooplankton abundance (92.3%) (Fig. 3a, Table 2). Copepoda alone accounted for 79.2% of the total zooplankton abundance. Other crustacean groups recorded with high relative abundance were Decapoda (4.7%), Cladocera (3.7%), Mysidacea (2.7%), and Euphausiacea (2.0%). Fish eggs accounted for 1.5% of total abundance, indicating the relevance of the near-shore habitat for fish reproduction during November. Appendicularia (Order Copelata) and Chaetognatha, each one had 1.4% of total relative abundance. The rest of the 12 taxonomic groups accounted individually <0.6%, accumulating only 3.4% of the total abundance (Fig. 3a, Table 2).

 

Figure 3. Relative abundance of near-shore zooplankton identified per a) zooplankton groups
and b) selected numerically dominant zooplankton species that could be the most trophically
relevant zooplankton species from the Islas Marías Archipelago recorded during November 2010.

 

Table 2. Zooplankton abundance (ind. 1000 m3) identified per taxonomic groups collected
during November 2010 in the Islas Marías Archipelago. In bold are showed the taxonomic
groups that were further identified to family, genus or species level.

 

Zooplankton identified per species

From 12 selected taxonomic groups a total of 259 taxa were identified in the near-shore zooplankton assemblage. Fish larvae showed the highest taxa number (107 taxa ranging from family to species) decreasing with Decapoda (56), Copepoda (35), Thecosomata (17), Amphipoda (15), Siphonophora (10), Chaetognatha (7), Euphausiacea (6), Cladocera (2), Mysidacea (2), Appendicularia (1), and Cephalopoda (1) (Table 3). Copepoda, Euphausiacea, Amphipoda, and Cladocera are relatively well-known species in the central Mexican Pacific region. The tropical Copepoda Calanopia minor A. Scott, Clausocalanus jobei Frost & Fleminger, Acrocalanus gibber Giesbrecht, Canthocalanus pauper (Giesbrecht), and Centropages furcatus (Dana) had abundances between 7.5 and 10.1%, all them accounting for 36% of the identified species total abundance (Fig. 3b, Table 3). None of them are numerically dominant in the central and northern Gulf of California or in offshore waters from the TEP regions. The tropical copepods Centropages furcatus (Dana) (5.2%) and Oncea venusta Phillippi (4%) also are relatively abundant in the central and north of the Gulf of California during summer.

 

Table 3. Systematic species composition, relative abundance, mean, and standard deviation
abundance (ind 1000 m3) of selected holozooplankton and merozooplankton ionomic groups
collected at Islas Marías Archipelago during November 2010. SD: standard deviation.

 

The Cladocera, Pseudevadne tergestina (Claus) was also abundant (6.5%). Euphausiacea, mostly as larvae and juvenile phases, were relatively scarce in the IMA near-shore habitat, The TEP endemic species: [Euphausiacea distinguenda Hansen, 1908 (3.4%) and Euphausiacea lamelligera Hansen, 1911 (2.3%)] (Fig. 3b). The most abundant species from Chaetognatha (<2.3%, Flaccisagitta enflata (Grassi)), Decapoda (<1.7%, Uca sp.), Amphipoda (<1.1%, Lestrigonus bengalensis Giles), Mysidacea (<0.4% Mysidium ricketsi Harrison & Bowman), Pteropoda (<0.3%, Creseis virgula virgula Rang), and Siphonophorae, had considerably low abundance. However, they were relatively widely distributed in the IMA near-shore habitat (Fig. 3b, Table 3). Decapoda larvae from Mexican waters are highly diverse but poorly known; they were identified typically family- genus level using taxonomic keys mostly from the California Current and the Atlantic and Mediterranean Sea (Table 3). A large number of fish larvae (75 taxa) were not possible to identify at the species level (31 to genera and 44 to family level, or morphotype) belonging to benthic cryptic and reef habitat associated tropical taxa. The fish families with larger number of species were Dactyloscopidae (19 taxa), Labrisomidae (16), Tripterygiidae (8), Haemulidae, Chaenopsidae, and Gobiesocidae (7 taxa each one). Scombridae (Auxis sp., 205 larvae 1000 m-3) and Tripterygiidae [Enneanectes sp. 2 with 139.6 larvae 1000 m-3 and Enneanected carminalis (Jordan & Gilbert) with 82.5 larvae 1000 m-3] were the most abundant fish larvae detected in this study. Although IMA is located near and east the shelf break, zooplankton assemblage was clearly outnumbered by tropical species from the neritic habitat, mostly crustaceans (copepods, cladocera, and mysids) suggesting a close connectivity of this archipelago with the coastal habitat from Cape Corrientes region (Table 4).

 

Table 4. Fish larvae (ichthyoplankton) taxonomic assemblage collected at the Mexican
Tropical Pacific, Gulf of California and California Current System. nd: no data available,
*: Juvenile and adult fish checklist investigation carried out diving during November 2010
survey (Erisman et al., 2011).

 

Zooplankton two-way cluster analysis

Cluster analysis applied to the 20 taxonomic groups (fish eggs and larvae were here considered as different groups) showed three groups of stations segregating two groups that separate southwest and northeast of the Archipelago (Groups 1 SW, 2NW) and a third group that includes stations from southeast and northwest (Group 3 SE-NW) (Fig. 4a). The cluster analysis for zooplankton groups showed three groups ordered from high abundance (Group 1, with 12 taxonomic groups Copepoda-Mysidacea) to medium (Group 2 Salpida-Ostracoda), and low abundance (Group 3 Cephalopoda-Cirripedia) (Fig. 4a).

 

Figure 4. a) Map with station sampled, Two-way cluster analysis of zooplankton identified
per b) taxonomic group, and c) dominant zooplankton species during November 2010 at
Islas Marías Archipelago.

 

Cluster analysis applied to 69 of the most abundant taxa (identified down to genus and species) showed also three groups of stations segregating two groups that separate west and south of the archipelago (1 W, 2 S) and a third group that include stations from northwest (3 NW) of the IMA (Fig. 4b). Cluster analysis was used to determine species assemblages (120 species, excluding those identified only to genus family taxonomic level) at 25% of similarity (dashed line) showed four species groups (Groups 1-4). Species of Group 1 (12 taxa; Acartia lilljeborgii Giesbrecht-Grapsus sp.) were located mostly along the west coast of the archipelago. The Group 2 (7 taxa; Pagurus sp. 1-Muggiaea atlantica Cunningham) along the west coast of the archipelago. Species of Group 3 (43 taxa; Canthocalanus pauper (Giesbrecht)-Diphyidae sp.) was the most diverse and widely distributed in all the IMA including most of the numerically dominant copepod species in the zooplankton samples present in the four islands. The last Group 4 [7 taxa with very low abundance; Euphausia eximia Hansen-Planktomya henseni Simroth] had a very patchy distribution pattern. Overall, the species group assemblages at IMA showed a geographical separation (mostly a longitudinal cline likely enhanced by the presence of the shelf-break at the west of IMA) on moderates and low abundance taxa but not for species highly abundant and widely distributed among the four islands (Figs. 4a-4b).

DISCUSSION

Islas Marías Archipelago species assemblage (neritic vs oceanic affinity)

Our zooplankton assemblage study provides an emerging view about how the IMA show large proportion of a diverse tropical-neritic species dominated by 12 holoplanktonic taxa (mostly crustaceans) and, in less proportion, eight meroplanktonic taxa (fish eggs and larvae were here considered as separated groups), inhabiting a relatively mesotrophic habitat featured with low Chl-a concentration and low zooplankton biovolume (López-Sandoval et al., 2009; Fernández-Álamo & Färber-Lorda, 2006). Comparing IMA zooplankton community structure from IMA with those collected at offshore waters of the Gulf of California and coastal region of Cabo Corrientes we found a more similar zooplanktonic fauna with the tropical coastal species assemblage previously detected along Cape Corrientes coast, Jalisco, Mexico.

For example, Islas Marías Archipelago fish larvae species, family composition, and abundance, were similar to those detected during another zooplankton survey carried out during October 2002 in 12 sites at Isabel Island, located ~27 km offshore Nayarit coast and ~70 km East from IMA (Funes-Rodríguez et al., unpublished data) (Table 4). This dominant species composition is consistent with other ichthyoplanktonic studies carried out along the continental shelf of the Cabo Corrientes region, where most specious families were flatfishes (Franco-Gordo et al., 2002) and reef fishes (Silva-Segundo et al., 2008). One interesting exception of this pattern observed in the present study was the presence of Auxis sp. (Scombridae), as the relatively most abundant fish larvae recorded near the coast of IMA, because tuna are a well-known oceanic affinity species in the TEP region. Without this exception, the rest of the IMA fish larvae species were of neritic affinity (different to fish larvae typically observed at offshore regions of the mouth of the Gulf of California) numerically dominated by the tropical mesopelagic, like Benthosema panamense (Aceves-Medina et al., 2004; González-Armas et al., 2008; León-Chávez et al., 2010). In the TEP assemblages, the tropical mesopelagic Vinciguerria lucetia and Diogenicthys laternatus (Garman) species dominate the transition region in winter; while the neritic pelagic, Bregmaceros bathymaster, dominates the "coastal-oceanic" assemblage in autumn at Cabo Corrientes region (León-Chavez et al., 2010), near the coasts of Jalisco and Colima States (Siordia-Cermeño et al., 2006), and at Gulf of Tehuantepec (López-Chávez et al., 2012).

Near shore IMA region showed relatively low copepod diversity (35 species) of tropical affinity that contrasts with the about 480 copepods species recorded for the TEP region (Central America, Galapagos, Northern Perú) (Razouls et al., 2005-2012; Suárez-Morales & Gasca, 1998) and 130 species in the Gulf of California (Brinton et al., 1986, Hernández-Trujillo & Esquivel-Herrera, 1989; Palomares-García et al., 1998, 2013). This low Copepoda diversity at IMA is likely related with the shallow and coastal sampling done in the present study. Five species (Calanopia minor, Clausocalanus jobei, Acrocalanus gibber, Canthocalanus pauper, and Centropages furcatus) accounted for about 43% of total abundance of all the 259 identified species. As far as we know, this is the first record of Calanopia elliptica and Acrocalanus gibber in Mexican waters according with species detected in three exhaustive free-living marine Copepoda checklists (Palomares-García et al., 1998; Suárez-Morales & Gasca, 1998; Razouls et al., 20052012). These five copepod species are tropical and subtropical neritic species that have not been recorded or detected in very low abundances at offshore regions of the TEP, where are numerically dominated by species of oceanic affinity, like Subeucalanus subtenuis (Giesbrecht) (33.5%), Subeucalanus subcrassus (Giesbrecht) (12.8%), and Rhincalanus nasutus Giesbrecht (9.5%) from a copepod assemblage of 63 species (Chen, 1986). Palomares-García et al. (2013) detected 53 Copepoda species in the central and northern Gulf of California showing different dominant species during winter [Pleuromamma gracilis Claus, Calanus pacificus Brodsky, R. nasutus, and Scolecithrix danae (Lubbock), summing 65%] than during summer [Centropages furcatus, Clausocalanus furcatus (Brady), and R. nasutus 24%]. Except Canthocalanus pauper that also was numerically dominant during summer at northern latitudes from the Gulf of California (Palomares-García et al., 1998) and at IMA region, the numerically dominant copepod species composition reported in IMA were not dominant at offshore epipelagic habitats from the central and northern regions of the Gulf of California suggesting that IMA has a different zooplankton assemblage (Jiménez-Pérez & Lara-Lara, 1988; Hernández-Trujillo & Esquivel-Herrera, 1989; Palomares-García et al., 1998, 2013; Suárez-Morales et al., 2000; Siordia-Cermeño & Sánchez-Velasco, 2004; Lavaniegos et al., 2012).

At IMA we detected only two mysid species, Mysidium rickettsi, that was moderately abundant but with a patchy distribution pattern in the archipelago (63% of frequency of occurrence), and Syriella pacifica, detected only in one zooplankton sample in very low abundance. Harrison & Bowman (1987) described M. rickettsi from specimens collected by Rickets & Steinbeck in 1940 at Port Marcial, Baja California Sur and Bahía Ohiura, Sonora, and from specimens obtained in the 1980 decade through manta ray gut contents from four localities near Bahía de La Paz B.C.S. collected by Notarbartolo-di-Sciara (1988) (in fact M. rickettsi was the second most abundant prey from manta ray just after the euphausiid Nyctiphanes simplex Hansen). The presence of M. rickettsi at IMA is the southernmost record for this species expanding ~400 km its distribution range from previous reports (Harrison & Bowman, 1987; Notarbartolo-di-Sciara, 1988). This is also relevant evidence that IMA represents a neritic habitat suitable for mysids (mysids are not detected in offshore oceanographic cruises) even than this Archipelago is located 70-90 km offshore from Cabo Corrientes coast.

Euphausiids also suggest a neritic tropical habitat because were detected larvae and juveniles of two endemic neritic TEP krill species that dominate Cabo Corrientes region: Euphausia distinguenda and with less abundance E. lamelligera. Both species are well known from previous studies at the central Mexican Pacific coast (Mundhenke, 1969; Brinton, 1979), the mouth of Gulf of California (Färber-Lorda et al., 2004, 2010) and along the Jalisco-Colima coast where E. distinguenda (88-90%) outnumbers E. lamelligera (7%) (Ambríz-Arreola et al., 2012). This abundance pattern contrast with offshore waters where E. lamelligera is considerably more abundant than E. distinguenda (Brinton, 1979; Brinton & Townsend, 1980; Brinton et al., 1986; Farber-Lorda et al., 2010). Because we sampled only near-shore shallow seafloor (10-40 m depth) we expected to find only larvae and juvenile, since adult's distribution is related with deeper seafloor as they do large daily vertical migrations (Lavaniegos, 1996; Tremblay et al., 2010).

The amphipods Lestrigonus bengalensis and Hyperioides sibaginis (Stebbing) were the most abundant of 15 Amphipoda species collected at IMA. L. bengalensis is the most abundant amphipod in the entire Gulf of California, particularly in neritic waters, while H. sibaginis is considered uncommon in the gulf, but relatively abundant at IMA region (Siegel-Causey, 1982; Brinton et al., 1986; Gasca & Franco-Gordo, 2008; Gasca et al., 2012). Along the coast of Cape Corrientes, occurs a considerably more diverse amphipod assemblage (80 species, 3-48 species per oceanographic station), but also overwhelming numerically dominated by these two amphipod species (both accounting 79% of the total Hyperiidae amphipod abundance). However, H. sibaginis (65%) is typically more abundant than L. bengalensis (14%) throughout the year in Cape Corrientes (Gasca & Franco-Gordo, 2008; Gasca et al., 2012). If amphipod species per se does not give a clue about if IMA is a neritic or oceanic habitat maybe their abundances can do. Hyperiidae, particularly the most numerically dominant species, are typically more abundant inshore (1432 ind 1000 m-3, 68 species) than offshore (736 ind 1000 m-3, 77 species) (Gasca et al., 2012). This explains the relatively low mean abundance of hyperiid amphipods (917 ind 1000 m-3) at IMA as an amphipod coastal-oceanic species diversity gradient, although does not explain the relatively low amphipod species richness (15 species) (sampled at locations <30 m depth). However, it is clear that Islas Marías amphipods were clearly dominated by tropical-neritic amphipod species typical from the Panamic region (Valencia & Giraldo, 2009), being considerably different from California and Baja California peninsula regions, the Gulf of California, and Central region of Mexican Pacific (Lavaniegos & Ohman, 2003; Lavaniegos & Hereu, 2009).

At IMA and Banderas Bay coast (Cape Corrientes) the Chaetognatha Parasagitta euneritica (Alvariño) (84%) and Flaccisagitta enflata (Grassi) (8.3%) were the most abundant and widely distributed species from the 7 species of Chaetognatha detected near the coast (Ruiz-Boijseauneau et al., 2004). P. euneritica is a coastal epiplanktonic species distributed along the coastal waters of the eastern Pacific Ocean, from 45 °N to Baja California and inside the Gulf of California (Bieri, 1957, 1959; Alvariño, 1965, 1969; Hernández-Trujillo & Esquivel-Herrera, 1989; Ruiz-Boijseauneau et al, 2004; Cota-Meza, 2011). Through the Gulf of California four [F. enflata, Sagitta minima (Grassi), P. euneritica (Alvariño), and Decipisagitta decipiens (Fowler)] of the 17 Chaetognatha species are widely distributed in the region while Flaccisagitta hexaptera (D'Orbigny), Aidanosagitta neglecta (Aida), Zonosagitta bedoti (Beraneck) (all them originally included in the genus Sagitta), and Krohnitta pacifica Ritter-Záhony of tropical affinity were detected only in the mouth of the gulf (Alvariño, 1969). At Banderas Bay, located south of IMA region, the most common Chaetognatha species were P. euneritica, A. neglecta, F. enflata, Z. bedoti, Serratosagitta pacifica (Tokioka), S. minima, and K. pacifica.

Thus, with few exceptions, most of the taxonomic species group defines IMA zooplankton species assemblage as a neritic tropical habitat. However, IMA insular waters seem to have mesotropic conditions proper of offshore waters rather than relatively more productive coastal waters from Cape Corrientes coast because tropical waters from the TEP influenced the IMA region. Zooplankton biovolume at IMA (mean 63 mL 1000 m-3) was comparable with the zooplankton biovolume range 50-100 mL 1000 m-3 throughout the year reported from oceanic epipelagic waters of the TEP from a comprehensive large-scale integration of historical data set (1955-2000) (Fernández-Álamo & Färber-Lorda, 2006). We sampled during the summer-autumn period (November 2010), when Islas Marías Archipelago usually have the lower phytoplankton biomass productivity (López-Sandoval et al., 2009) and considerably lower zooplankton biovolume values than those recorded from the central Gulf of California during November 2005, and January and July 2007 (Table 1, same plankton sampling method) or from the mouth of the Gulf of California and off Cape Corrientes (>300 mL 1000 m-3) observed during November 2005 and March 2007 (collected with Bongo oblique tows) (León-Chávez et al., 2010).

Oceanographic processes that enhance coastal-insular zooplankton connectivity

Although the IMA is located relatively offshore (90-120 km), this is still located over the continental shelf near and east of the shelf-break. The similarity of multiple neritic and tropical species in the zooplankton assemblage from IMA and Cape Corrientes suggests strong coastal-insular zooplankton connectivity. However, which oceanographic processes enhance this possible coastal-insular plankton connectivity? An extensive literature review suggests that at least three mesoscale oceanographic processes could be involved in episodic events of continental-archipelago zooplankton population connectivity:

1) Intense river's plumes occurring during the hurricane season (August-October) affect the turbidity and increase Chl-a concentration (probably also detected with surface salinity), modifying also other physical and chemical characteristics (Martínez-Flores et al., 2011) and, more interestingly, sporadically transporting plankton from Cape Corrientes coast toward offshore waters. Thus, this process may facilitate the colonization of meroplanktonic organisms in the IMA benthic and demersal habitats. For example, a plume of river's discharges originated from Acaponeta, San Pedro, Santiago, and Ameca, detected in August 2004, covered an area of 44,000 km2 reaching offshore regions, as far ~300 km offshore from the Nayarit coastline surrounding the IMA and Isla Isabel (Martínez-Flores et al., 2011).

2) Although it is unlikely that the IMA region becomes influenced by the regular seasonal coastal-upwelling activity detected off Cape Corrientes region (Ambríz-Arreola et al., 2012), because it is located far beyond the 60-km distance of influence that typically coastal upwelling events have (Bakun, 1996); recently it was proposed, with an altimeter merged data series of 18 years (October 1992-October 2010), a close connection of coastal wind-forced upwelling with the generation of large cyclonic and anticyclonic eddies (>10 weeks duration, mostly cyclonic) in the Cape Corrientes region that travel offshore with southwest direction in the TEP (Kurczyn et al., 2012). Mesoscale eddies in this region also can be formed through baroclinic instabilities of the near-coastal currents (Pantoja et al., 2012), interaction of the large-scale circulation with the bottom topography (Kurian et al., 2011), local wind-forcing (Pares-Sierra et al., 1993), or coastally trapped waves of equatorial origin (Zamudio et al., 2001, 2007). These long-lived eddies were mainly nonlinear and therefore can redistribute coastal waters relatively far into the open ocean. Cyclonic and anticyclonic eddies in TEP region influence retention and transport of zooplankton offshore (Fernández-Álamo & Färber-Lorda, 2006), like fish larvae (León-Chávez et al., 2010) and krill species assemblages (Färber-Lorda et al., 2004, 2010).

3) Another seasonal process that can strongly influence IMA insular zooplankton is a summer intense coastal poleward current of 90-180 km wide and 250-400 m deep with surface speed between 0.15 and 0.35 m s-1 (Lavín et al., 2006). This process may explain why zooplanktonic fauna at IMA region during November 2010 was mostly formed by tropical affinity species, rather than having a large proportion of fauna from the northern subtropical Gulf of California (Mundhenke, 1969; Brinton, 1979; Brinton et al., 1986; Fernández-Álamo & Färber-Lorda, 2006).

All these three oceanographic processes might explain why insular plankton have a large component of neritic tropical zooplankton rather than typically oceanic plankton affinity that usually occur at region >70 km offshore in the Gulf of California.

Potential methodological biases

Although the present study was far to be comprehensive (11 samples collected only during November 2010), this was done in the IMA restricted access zone (a really difficult site to sample due the existence of a Federal Prison at Isla Madre) and provided an interesting new perspective about the zooplankton neritic and tropical affinity (due the uncommon effort to gather taxonomic experts on 12 taxonomic zooplankton groups). However, the present study has several methodological limitations that must be taken into account. 1) It is evident that seasonal contrasting sampling must be done if we want to understand seasonal community structure variability, reproductive periods, as well as population attributes of zooplankton fauna that interact with near-shore benthic and nektonic fauna that inhabit the Islas Marías Archipelago. 2) Near-surface plankton net tow sampling effort likely underestimate relative abundance and species diversity of epibenthic plankton like mysids. During several scuba diving carried out in rocky and rhodolith seafloor in November 2010, we observed dense epibenthic mysid swarms that seem to play a relevant trophic function for demersal and benthic local zooplanktophagous predators. 3) The IMA fish larvae species and morph composition must be biased toward a seasonal reproductive of some fish species. Even though, this study provided evidence that may complement other studies done in this archipelago in the future. It was interesting that several fish species recorded in the present study as larvae were not included in the juvenile and adult species checklist from Islas Marías (Erisman et al., 2011). The present work increased the fish species list in the IMA with larvae of the families: Clupeidae (Opisthonema sp. 1); Phosichthyidae [Vinciguerria lucetia (Garman)]; Myctophidae [Benthosema panamense (Tåning)]; Bregmacerotidae (Bregmaceros bathymaster Jordan & Bollman); Serranidae (Ephinephelus analogus Gil, Paralabrax loro Walford, Paranthias colonus Valenciennes); Ammodytidae [Ammodytoides gilli (Bean)]; Tripterygiidae [Enneanectes nigricaudus (Allen & Robertson), E. reticulates Allen & Robertson, E. sexmaculatus (Fowler)]; Dactyloscopidae [Dactyloscopus pectoralis Gill, Gillellus semicinctus Gilbert, Heteristius cinctus (Osburn & Nichols)]; Labrisomidae [Dialommus macrocephalus (Günther)]; Chaenopsidae (Acanthemblemaria crockery Beebe & Tee-Van), Scombridae (Auxis sp. 1); Nomeidae (Psenes sio Haedrich), and Paralichthydae (Citharicthys platophrys Gilbert). Clearly, these differences obey that adults of such species typically inhabit meso-pelagic, neritic, bentho-pelagic, or oceanic habitats not covered observed during the diving surveys reported in Erisman et al. (2011).

Although estimate species diversity is one of the most common topics in marine ecology this endeavor requires an enormous amount of taxonomic expertise knowledge to identify the entire community of organisms that interact each other in this habitat. In the present study we attempted, from a modest sample size, identify as precise as possible most of the zooplankton assemblage of the tropical Islas Marías Archipelago. As a region not previously studied we found a large proportion of fish larvae not previously observed at ichthyoplanktonic surveys done along the west coast of Baja California Peninsula, Gulf of California, or Cape Corrientes regions during the more three decades of research (1980 to 2014) (Aceves-Medina et al., 2003, 2004; Franco-Gordo et al., 1999, 2004; Aceves-Medina et al., 2003, 2004; Funes-Rodríguez et al., 2011; Silva-Segundo et al., 2008; León-Chávez et al., 2010; Funes-Rodríguez et al., 2011; Avendaño-Ibarra et al., 2013, 2014). These are most likely fish larvae of benthic or demersal coastal fish species, which larval description and taxonomy is still highly fragmented (Brogan, 1992; Moser, 1996). Fish larvae descriptions from species distributed in the Colombian Pacific were particularly useful in the present study (Beltran-León & Ríos-Herrera, 2000), indicating the tropical zoogeographic affinity of ichthyoplanktonic fauna collected at IMA. This lack of taxonomic knowledge is prevalent in numerous taxonomic groups in Mexican waters (particularly in tropical habitats) like Decapoda, Mysidacea and all eight taxonomic groups not identified here to species level (Table 2). Therefore, define precisely the zooplankton assemblage at IMA, or in general in the Mexican TEP region, is currently an enormous scientific and taxonomic challenge if we want to understand how this small tropical Archipelago interact with processes responsible of self-maintained productivity and plankton population connectivity of this Archipelago with coastal and offshore ecosystems.

CONCLUSIONS

Insular near-shore zooplankton fauna from Islas Marías Archipelago (IMA) is dominated, in November, by species not typically captured in offshore regions of the central and northern Gulf of California regions, but they seem to be quite similar to coastal zooplankton assemblage from Cape Corrientes region. These results suggest that IMA has considerably zooplankton connectivity with the Mexican mainland coast. The most likely mesoscale oceanographic processes responsible of this coastal-insular plankton connectivity could be episodic plumes from river runoff during the seasonal hurricane season, during rainy years, eddies generated by coastal upwelling, and coastal polarward currents that result in an overall plankton drift from Cape Corrientes coast toward offshore waters. Five tropical and neritic copepod species and a Cladocera, Pseudoevadne tergestina dominate zooplankton species assemblage suggesting these species have a relevant tropho-dynamic role at coastal and insular habitats being available for planktophagous predators from the islands. Because ichthyoplankton (egg and larvae), mollusks and Decapoda taxonomy is poorly known in a taxonomic perspective, this represent an interesting investigation field to discover and describe the diverse cryptic, demersal, and benthic species community reported from this tropical Archipelago.

ACKNOWLEDGEMENTS

Instituto Nacional de Ecología (INE), Mexico, Fondo Mexicano and an anonymous donor funded IMA research cruise on board Rocío del Mar Liveaboard. Scripps Institution Oceanography (SIO) Marine Vertebrate Collection, SIO Center for Marine Biodiversity and Conservation A.C., Universidad Autónoma de Baja California Sur, and Centro Interdisciplinario de Ciencias Marinas (Instituto Politécnico Nacional, SIP-IPN 20100173) also provided additional financial support. We thank facilities for research collection and permission to do this research at Islas Marías Archipelago authorized by Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), Comisión Nacional de Áreas Naturales Protegidas (CONANP), México (Oficio NUM. F00-0526). We thank scientists and crew of the ship 'Rocío del Mar' for their valuable help during zooplankton collection. We thank to Comisión Nacional de Áreas Naturales Protegidas (CONANP), Secretaria de Gobernación de México and penitentiary colony at Isla María Madre and Secretaria de Marina for their logistical facilities. We deeply thank to the following taxonomic experts for their valuable help in the identification and literature provided of several zooplankton groups collected at IMA Archipelago: Dr. Rebeca Gasca (Colegio de la Frontera Sur, Chetumal) for Amphipoda; M.Sc. Arturo Ruíz-Villanueva (Instituto Nacional de Ecología, Veracruz) for Siphonophora; M.Sc. María Soledad Cota-Meza (CICIMAR-IPN) for Chaetognatha, Dr. Orso Juan Angulo Campillo (CIBNOR, La Paz) for Pteropoda, Dr. Wayne Price (University of Tampa) and Dr. Leonardo Kenji Miyashita (University of São Paulo, Brazil) for Mysidacea, and Biol. Eduardo Anaya-Godínez for ichthyoplankton. We thank to Biol. Minerva Maldonado and Dr. Carlos J. Robinson (Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México) for their help to obtain satellite images of sea surface temperature and chlorophyll-a concentration from IMA region.

 

REFERENCES

Aceves-Medina, G.A., S.P.A. Jiménez-Rosenberg, A. Hinojosa-Medina, R. Funes-Rodríguez, R.J. Saldierna-Martínez, D. Lluch-Belda, P. Smith & W. Watson. 2003. Fish larvae from the Gulf of California. Sci. Mar., 67: 1-11.         [ Links ]

Aceves-Medina, G.A., A. Hinojosa-Medina, S.P.A. Jiménez-Rosenberg, R. Funes-Rodríguez & R.J. Saldierna-Martínez. 2004. Fish larvae assemblages in the Gulf of California. J. Fish. Biol., 65: 1-16.         [ Links ]

Albornoz, L. & I.S. Wehrtmann. 1997. Descripción y clave de los primeros estadíos larvales de camarones carídeos (Decapoda: Hippolytidae, Alpheidae, Rhyn-chocinetidae) de aguas costeras de Chile. Invest. Mar., Valparaíso, 25: 121-133.         [ Links ]

Alvariño, A. 1963. Quetognatos epiplanctónicos del Mar de Cortés. Rev. Soc. Mex. Hist. Nat., 34: 97-203.         [ Links ]

Alvariño, A. 1965. Chaetognaths. Oceanogr. Mar. Biol. Ann. Rev., 3: 115-194.         [ Links ]

Alvariño, A. 1967. The Chaetognatha of the NAGA expedition (1959-1961) in the South China Sea and the Gulf of Thailand. Part 1. Systematics. NAGA Rep., 4: 1-197.         [ Links ]

Alvariño, A. 1969. Zoogeografía del Mar de Cortés: quetognatos, sifonoforos y medusas. An. Inst. Biol. Univ. Nac. Auton. Mex., 40: 11-54.         [ Links ]

Ambríz-Arreola, I., J. Gómez-Gutiérrez, M.C. Franco-Gordo, B.E. Lavaniegos & E. Godínez-Domínguez. 2012. Influence of coastal upwelling-downwelling variability on tropical euphausiid abundance and community structure in the inshore Mexican central Pacific. Mar. Ecol. Prog. Ser., 451: 119-136.         [ Links ]

Angulo-Campillo, O.J. 2009. Taxocenosis de moluscos holoplanctónicos (Mollusca: Gasteropoda) y su relación biogeográfica en el Golfo de California. Doctor Thesis, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, BCS, 557 pp.         [ Links ]

Anosov, S.E. 2000. Keys to the identification of brachyuran larvae of the Black Sea. Crustaceana, 70(19): 1239-1246.         [ Links ]

Avendaño-Ibarra, R., E. Godínez-Domínguez, G. Aceves-Medina, E. González-Rodríguez & A. Trasviña. 2013. Fish larvae response to biophysical changes in the Gulf of California, Mexico (winter-summer). J. Mar. Biol., 2013: 1-17.         [ Links ]

Avendaño-Ibarra, A., G. Aceves-Medina, E. Godínez-Domínguez, R. De Silva-Dávila, S.P. Jiménez-Rosemberg, H. Urias-Leyva & C.J. Robinson. 2014. Fish larvae from the Gulf of California to Colima, Mexico: an update. Check List, 10(1): 106-121.         [ Links ]

Baker, A. de C., P. Boden & E. Brinton. 1990. A practical guide to the euphausiids of the world. Nat. Hist. Mus. Pub. London, pp. 1-96.         [ Links ]

Bakun, A. 1996. Patterns in the Ocean: ocean processes and marine population dynamics. Calif. Sea Grant, NOAA, CIBNOR, 323 pp.         [ Links ]

Beltrán-León, B.S. & R. Ríos-Herrera. 2000. Estadios tempranos de peces del Pacífico Colombiano. Instituto Nacional de Pesca y Acuicultura, Buenaventura-Colombia, I y II: 1-727.         [ Links ]

Bieri, R. 1957. The Chaetognatha fauna off Peru in 1941. Pac. Sci., 11: 255-264.         [ Links ]

Bieri, R. 1959. The distribution of planktonic Chaetognatha in the Pacific and their relationship to the water masses. Limnol. Oceanogr., 4: 1-28.         [ Links ]

Brinton, E. 1979. Parameters relating the distribution of planktonic organisms, especially euphausiids in the Eastern Tropical Pacific. Prog. Oceanogr., 8: 125-189.         [ Links ]

Brinton, E. & A.W. Townsend. 1980. Euphausiids in the Gulf of California - the 1957 cruises. CalCOFI Rep., 21: 211-236.         [ Links ]

Brinton, E., A. Fleminger & D. Siegel-Causey. 1986. The temperate and tropical planktonic biotas of the Gulf of California. CalCOFI Rep., 27: 228-266.         [ Links ]

Brinton, E., M.D. Ohman, A.W. Townsend, M.D. Knight & A.L. Bridgeman. 2000. Euphausiids of the world ocean. World biodiversity database CD-ROM Series. Expert Center for Taxonomic Identification, Amsterdam.         [ Links ]

Brogan, M.W. 1992. Ecology of larval fishes around reefs in the Gulf of California, México. Ph.D. Thesis University of Arizona, Tucson, 332 pp.         [ Links ]

Casanova, J.P. 1999. Chaetognatha. In: D. Boltovskoy (ed.). South Atlantic zooplankton. Backhuys Publishers, Leiden, pp. 1352-1374.         [ Links ]

Chen, Y.-Q. 1986. The vertical distribution of some pelagic copepods in the Eastern Tropical Pacific. CalCOFI, Rep., 27: 205-227.         [ Links ]

Cota-Meza, S. 2011. Chaetognatha in the Bahía Magdalena lagoon complex, Baja California Sur, México: species composition and assemblages. J. Environ. Biol., 32: 401-406.         [ Links ]

Deprez, T. 2005. NeMys. World wide web electronic publication. www.nemys.ugent.be, version. Reviewed: 8 March 2013.         [ Links ]

Dos Santos, A. & J.A. Lindley. 2001. Crustacea, Decapoda: Larvae, II. Dendrobranchiata (Aristeidae, Benthesicymidae, Penaeidae, Solenoceridae, Sicyonidae, Sergestidae, and Luciferidae). ICES Identification leaflets for Plankton. ICES, Copenhagen K. Denmark Leaflet, 186: 1-9.         [ Links ]

Dos Santos, A. & J.I. González-Gordillo. 2004. Illustrated keys for the identification of the Pleocyemata (Crustacea: Decapoda) zoeal stages, from the coastal region of south-western Europe. J. Mar. Biol. Ass. U.K., 84(1): 205-227.         [ Links ]

Erisman, B., G. Galland, I. Mascareñas, J. Moxley, H.J. Walker, O. Aburto-Oropeza, P. Hastings & E. Ezcurra. 2011. List of coastal fishes of Islas Marías Archipelago, Mexico, with comments on taxonomic composition, biogeography, and abundance. Zootaxa, 2985: 26-40.         [ Links ]

Färber-Lorda, J., A. Trasviña & P. Cortés-Verdín. 2004. Trophic conditions and zooplankton distribution in the entrance of the Sea of Cortés during summer. Deep-Sea Res. II, 51(6-9): 615-627.         [ Links ]

Färber-Lorda, J., A. Trasviña & P. Cortés-Verdín. 2010. Summer distribution of euphausiids in the entrance of the Sea of Cortés in relation to hydrography. Deep-Sea Res. Part II, 57: 631-641.         [ Links ]

Fernández-Álamo, M.A. & J. Färber-Lorda. 2006. Zooplankton and the oceanography of the Eastern Tropical Pacific: a review. Prog. Oceanogr., 69: 318-359.         [ Links ]

Fincham, A.A. & D.I. Williamson. 1978. Crustacea, Decapoda: Larvae, VI. Caridea, Families: Palemonidae and Processidea. Cons. Int. Explor. Mer, Zoopl. Sheet, 159/160: 1-8.         [ Links ]

Franco-Gordo, M.C., E. Godínez-Domínguez & E. Suárez-Morales. 2002. Larval fish assemblages off the central Pacific Oceanography. J. Plankton Res., 69: 318-359.         [ Links ]

Franco-Gordo, M.C., R. Flores-Vargas, C. Navarro-Rodríguez, R. Funes-Rodríguez & R.J. Saldierna-Martínez. 1999. Larval fish assemblages off the central Pacific coast of Mexico. J. Plankton Res., 24: 775-784.         [ Links ]

Franco-Gordo, M.C., E. Godínez-Domínguez, A.E. Filonov, I.E. Tereshchenko & J. Freire. 2004. Plankton biomass and larval fish abundance prior to and during the El Niño period of 1997-1998 along the central Pacific coast of México. Prog. Oceanogr., 63: 99-123.         [ Links ]

Funes-Rodríguez, R., A. Zarate-Villafranco, A.T. Hinojosa-Medina, R. González-Armas & S. Hernández-Trujillo. 2011. Mesopelagic fish larval assemblages during El Niño-southern oscillation (1997-2001) in the southern part of the California Current. Fish. Oceanogr., 20(4): 329-346.         [ Links ]

Gasca, R. & M.C. Franco-Gordo. 2008. Hyperiid amphipods (Peracarida) from Banderas Bay, Mexican Tropical Pacific. Crustaceana, 81(5): 563-575.         [ Links ]

Gasca, R., M.C. Franco-Gordo, E. Godínez-Domínguez & E. Suárez-Morales. 2012. Hyperiid amphipod community in the Eastern Tropical Pacific before, during, and after El Niño 1997-1998. Mar. Ecol. Prog. Ser., 455: 123-139.         [ Links ]

Gómez-Gutiérrez, J. & S. Hernández-Trujillo. 1994. Euphausiacea and Copepoda of the oceanic front off Cabo San Lucas B.C.S., México in August of 1988. Rev. Biol. Trop., 42(1-2): 155-164.         [ Links ]

González-Armas, R., R. Funes-Rodríguez & A. Amador-Buenrostro. 2008. Estructura de la comunidad de larvas de peces en una montaña submarina del Golfo de California. Hidrobiológica, 18: 77-88.         [ Links ]

Harrison, E.B. & T.E. Bowman. 1987. Mysidium rickettsi, a new species mysid from the Gulf of California. Proc. Biol. Soc. Wash., 100: 674-679.         [ Links ]

Hernández-Trujillo, S. & A. Esquivel-Herrera. 1989. Los copépodos y quetognatos del Golfo de California en la primavera de 1985. Invest. Mar. CICIMAR, 4: 151-164.         [ Links ]

Ii, N. 1964. Fauna Japonica mysidae (Crustacea). Biogeograph. Soc. Jap., Natl. Sci. Mus. Jap., 513 pp.         [ Links ]

Jiménez-Pérez, L.C. & J.R. Lara-Lara. 1988. Zooplankton biomass and copepod community structure in the Gulf of California during the 1982-1983 El Niño event. CalCOFI Rep., 29: 122-128.         [ Links ]

Kurczyn, J.A., E. Beier, M.F. Lavín & A. Chaigneau. 2012. Mesoscale eddies in the northeastern Pacific tropical-subtropical transition zone: statistical characterization from satellite altimetry. J. Geophys. Res., 117, C10021, doi: 10.1029/2012JC007970.         [ Links ]

Kurian, J., F. Colas, X. Capet, J.C. McWilliams & D.B. Chelton. 2011. Eddy properties in the California Current System, J. Geophys. Res. 16: 834 C08027, doi: 10.1029/2010JC006895.         [ Links ]

Lavaniegos, B.E. 1996. Vertical distribution of euphausiid life stages in waters adjacent to Baja California. Fish. Bull., 94: 300-312.         [ Links ]

Lavaniegos, B.E. & C. Hereu. 2009. Seasonal variation in hyperiid amphipod abundance and diversity and influence of mesoscale structures off Baja California. Mar. Ecol. Prog. Ser., 394: 137-152.         [ Links ]

Lavaniegos, B.E. & M.D. Ohman, 2003. Long-term changes in pelagic tunicates of the California Current. Mar. Ecol. Prog. Ser., 50: 2473-2498.         [ Links ]

Lavaniegos, B.E., G. Heckel & P. Ladrón de Guevara. 2012. Seasonal variability of copepods and cladocerans in Bahía de los Ángeles (Gulf of California) and importance of Acartia clausi as food for whale sharks. Cienc. Mar., 38(1A): 11-30.         [ Links ]

Lavín, M.F., E. Beier, J. Gómez-Valdés, C.M. Godínez & J. García. 2006. On the summer poleward coastal current off SW México. Geophys. Res. Lett., 33: L02601, doi: 10.1029/2005GL024686.         [ Links ]

León-Chávez, C., L. Sánchez-Velasco, E. Beier, M.F. Lavín, V.M. Godínez & J. Färber-Lorda. 2010. Larval fish assemblages and circulation in the Eastern Tropical Pacific in autumn and winter. J. Plankton Res., 32(4): 397-410.         [ Links ]

López-Chávez, O., G. Aceves-Medina, R.J. Saldierna-Martínez, S.P.A. Jiménez-Rosenberg, J.P. Murad-Serrano, Á. Marín-Gutiérrez & O. Hernández-Hernández. 2012. Changes in species composition and abundance of fish larvae from the Gulf of Tehuantepec, Mexico. CICIMAR Oceánides, 27(2): 111.         [ Links ]

López-Ibarra, G.A. 2008. Estructura trófica de los copépodos pelágicos en el Océano Pacífico Oriental Tropical. Doctor Thesis, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, BCS, 92 pp.         [ Links ]

López-Sandoval, D.C., J.R. Lara-Lara, M.F. Lavín, S. Álvarez-Borrego & G. Gaxiola-Castro. 2009. Productividad primaria en el Pacífico Oriental Tropical adyacente a Cabo Corrientes, México. Cienc. Mar., 35(2): 169-182.         [ Links ]

MacDonald, J.D., R.B. Pike & D.I. Williamson. 1957. Larvae of the British species of Diogenes, Pagurus, Anapagurus and Lithodes (Crustacea, Decapoda). Proc. Zool. Soc. London, 128(2): 209-258.         [ Links ]

Martínez-Flores, G., E.H. Nava-Sánchez & O. Zaitzev. 2011. Remote sensing of suspended matter plumes triggered by runoff in the south Gulf of California. CICIMAR Oceánides, 26(1): 1-18.         [ Links ]

Mauchline, J. 1980. The biology of mysids and euphausiids. Adv. Mar. Biol., 18: 1-681.         [ Links ]

McCune, B., J. Grace & D. Urban. 2002. Analysis of ecological communities. MjM software designs, Gleneden Beach, Oregon, 300 pp.         [ Links ]

Moser, H.G. 1996. The early stages of fishes in the California Current region. CalCOFI Atlas, 33: 1-1505.         [ Links ]

Mundhenke, D.J. 1969. The relationships between water masses and euphausiids in the Gulf of California and the Eastern Tropical Pacific. M.Sc. Thesis California. US Naval Postgraduate School, Monterey, 118 pp.         [ Links ]

Murano, M. & K. Fukuoka. 2008. A systematic study of the genus Siriella (Crustacea: Mysida) from the Pacific and Indian oceans, with descriptions of fifteen new species. Natl. Mus. Nat. Sci. Monogr., 36: 1-173.         [ Links ]

Naranjo, K., L. Sanvicente-Añore, J.L. Villalobos & M.A. Fernández-Álamo. 2006. Distribución y abundancia de larvas de crustáceos decápodos en la zona de las grandes islas del Golfo de California. In: M.E. Hendrickx (ed.). Contributions to the study of East Pacific crustaceans. Universidad Nacional Autónoma de México, 4(1): 61-75.         [ Links ]

Notabartolo-di-Sciara, G. 1988. Natural history of the rays of the genus Mobula in the Gulf of California. Fish. Oceanogr. , 86: 45-66.         [ Links ]

Palomares-García, R.J., J. Gómez-Gutiérrez & C.J. Robinson. 2013. Winter and summer vertical distribution of epipelagic copepods in the Gulf of California. J. Planktton Res., 35(5): 1009-1026.         [ Links ]

Palomares-García, R.J., E. Suárez-Morales & S. Hernández-Trujillo. 1998. Catálogo de los copépodos (Crustacea) pelágicos del Pacífico mexicano. Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, México, 352 pp.         [ Links ]

Pantoja, D.A., S.G. Marinone, A. Parés-Sierra & F. Gómez-Valdivia. 2012. Numerical modeling of seasonal and mesoscale hydrography and circulation in the Mexican Central Pacific. Cienc. Mar., 38(2): 363-379.         [ Links ]

Pares-Sierra, A., W.B. White & C.-K. Tai. 1993. Wind-driven coastal generation of annual mesoscale eddy activity in the California Current. J. Phys. Oceanogr., 23(6): 1110-1121.         [ Links ]

Pike, R.B. & D.I. Williamson. 1972. Crustacea, Decapoda: Larvae, X. Galatheidea. Cons. Int. Explor. Mer, Zoopl. Sheet, 139: 1-5.         [ Links ]

Price, W.W. 2004. An annotated checklist for the order Mysida (Crustacea: Malacostraca: Peracarida) from the Pacific coasts of the Americas (Alaska to Chile). In: M.E. Hendrickx (ed.). Contributions to the study of East Pacific crustaceans. Instituto de Ciencias del Mar y Limnología, UNAM, 3: 53-77.         [ Links ]

Puls, A.L. 2001. Arthropoda: Decapoda. In: A.L. Shanks (ed.). An identification guide to the larval marine invertebrates of the Pacific Northwest. Oregon Institute of Marine Biology, Oregon State University Press, Corvallis, 314 pp.         [ Links ]

Razouls, C., F. de Bovée, J. Kowenberg & N. Desreumaux. 2005-2012. Diversity and geographic distribution of marine planktonic copepods. Available from: http://copepodes.obs-banyuls.fr/en. Reviewed: 8 March 2013.         [ Links ]

Robertson, D.R. & K. Cramer. 2009. Shore fishes and biogeographic subdivisions if the tropical eastern Pacific. Mar. Ecol. Prog. Ser., 380: 1-17.         [ Links ]

Ruiz-Boijseauneau, I., L. Sanvicente-Añorve & M.A. Fernández-Álamo. 2004. Chaetognath assemblages in Bahía Banderas, Mexico. Bull. Mar. Sci., 75(1): 51-61.         [ Links ]

Seapy, R. 1990. The pelagic family Atlantidae (Gastropoda, Heteropoda) from Hawaiian waters: a faunistic survey. Malacologia, 31(1): 107-130.         [ Links ]

Siegel-Causey, D. 1982. Factors determining the distribution of hyperiid Amphipoda in the Gulf of California. Ph. D. Thesis, University of Arizona, Tucson, 535 pp.         [ Links ]

Silva-Segundo, C., R. Funes-Rodríguez, E. Ríos-Jara, E.G. Robles-Jarero & A.T. Hinojosa-Medina. 2008. Asociación de larvas de peces y su relación con el ambiente en Bahía Chamela, Jalisco y Santiago-Manzanillo, Colima. Hidrobiológica, 18: 89-103.         [ Links ]

Siordia-Cermeño, P.E. & L. Sánchez-Velasco. 2004. Distribución espacial de crustáceos del zooplancton en el Golfo de California (marzo 1998). In: M.E. Hendrickx (ed.). Contributions to the study of East Pacific crustaceans. Instituto de Ciencias del Mar y Limnología, UNAM, 3: 117-125.         [ Links ]

Siordia-Cermeño, P.E., L. Sánchez-Velasco, M. Sánchez-Ramírez & M.C. Franco-Gordo. 2006. Variación temporal de la dieta de larvas de peces de Bregmaceros bathymaster (Pisces: Bregmacerotidae) en las costas de Jalisco y Colima, México, durante un ciclo anual (1996). Cienc. Mar., 32(1A): 13-21.         [ Links ]

Smith, P.E. & S. Richardson. 1977. Standard techniques for pelagic fish egg and larvae survey. FAO Fish. Tech. Pap., 175: 100 pp.         [ Links ]

Spoel, S. Van Der. 1996. Heteropoda. In: R. Gasca & E. Súarez (eds.). Introducción al Estudio del Zooplancton Marino, El Colegio de la Frontera Sur (ECOSUR)/CONACYT, Mexico, pp. 408-457.         [ Links ]

Spoel, S. Van Der, L. Newman & K.W. Estep. 1997. Pelagic mollusks of the world. World Biodiversity Data Base, CD-ROM Series. Expert Center for Taxonomist Identification (ETI), UNESCO, Amsterdam and Paris.         [ Links ]

Suárez-Morales, E. & R. Gasca. 1998. Updated checklist of the free-living marine Copepoda (Crustacea) of Mexico. An. Inst. Biol. Univ. Nac. Auton. Mex., Zool., 69: 105-119.         [ Links ]

Suárez-Morales, E., M.C. Franco-Gordo & M. Saucedo-Lozano. 2000. On the pelagic copepod community of the central Mexican Tropical Pacific (Autumn, 1990). Crustaceana, 73: 751-761.         [ Links ]

Tattersall, W.M. 1951. A review of the Mysidacea in the United States National Museum. Bull. U. S. Nat. Mus., 201: 1-292.         [ Links ]

Tremblay, N., J. Gómez-Gutiérrez, T. Zenteno-Savín, C.J. Robinson & L. Sánchez-Velasco. 2010. Role of oxidative stress in seasonal and daily vertical migration of three species of krill in the Gulf of California. Limnol. Oceanogr., 55: 2570-2584.         [ Links ]

Valencia, B. & A. Giraldo. 2009. Hipéridos (Crustacea: Amphipoda) en el sector norte del Pacífico oriental tropical Colombiano. Lat. Am. J. Aquat. Res., 37: 265-273.         [ Links ]

Vicencio-Aguilar, V. & M.A. Fernández-Alamo. 2005. Radiolarians, cnidarians, annelids, crustaceans & chaetognaths from the plankton in the Gulf of California. Rev. Soc. Mex. Hist. Nat., 2(1): 91-106.         [ Links ]

Vilchis, I., L.T. Balance & W. Watson. 2009. Temporal variability of neustonic ichthyoplankton assemblages of the eastern Pacific warm pool: can community structure be linked to climate variability? Deep-Sea Res. I, 56: 125-140.         [ Links ]

Vinogradov, M.E., A.F. Volkov & T.N. Semenova. 1996. Hyperiid amphipods (Amphipoda, Hyperiidea) of the world oceans. Science Publishers Incorporated, Enfield, 632 pp.         [ Links ]

Williamson, D.I. 1957. Crustacea, Decapoda: Larvae, I. General. ICES, Zooplankton sheet, 67: 1-7.         [ Links ]

Williamson, D.I. 1957. Crustacea, Decapoda: Larvae, V. Caridea, Family Hippolytidae. ICES, Zooplankton sheet, 68: 1-5.         [ Links ]

Williamson, D.I. 1960. Crustacea, Decapoda: Larvae, VII. Caridea, Family Cangronidae, Stenopodidea. ICES, Zooplankton sheet, 90: 1-5.         [ Links ]

Williamson, D.I. 1962. Crustacea, Decapoda: Larvae, III. Caridea, Families Oplophoridae, Nematocarcinidae and Phasiphaeidae. ICES, Zooplankton sheet, 92: 1-5.         [ Links ]

Williamson, D.I. 1967. Crustacea, Decapoda: Larvae, IV. Caridea, Families: Pandalidae and Alpheidae. ICES, Zooplankton sheet, 109: 1-5.         [ Links ]

Williamson, D.I. 1983. Crustacea, Decapoda: Larvae, VIII. Nephropidea, Palinuridea, and Eryonidea. ICES, Zooplankton sheet, 167/168: 1-8.         [ Links ]

Zamudio, L., A.P. Leonardi, S.D. Meyers & J.J. O'Brien. 2001. ENSO and eddies on the southwest coast of Mexico. Geophys. Res. Lett., 28(1): 13-16.         [ Links ]

Zamudio, L., H.E. Hurlburn, E.J. Metzer & C.E. Tilburg. 2007. Tropical wave induced oceanic eddies at Cabo Corrientes and the María Islands, Mexico. J. Geophys. Res. Oceans, (C5): 112 pp.         [ Links ]

Zeidler, W. 2006. A review of the hyperiidean amphipod superfamily Archaeoscinoidea Vinogradov, Volkov and Semenova, 1982 (Crustacea: Amphipoda: Hyperiidea). Zootaxa, 1125: 1-37.         [ Links ]

 


Received: 4 July 2013;
Accepted: 30 July 2014

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License