SciELO - Scientific Electronic Library Online

 
vol.42 issue2The Lygaeoidea Sensu Lato of Magallanes Region:: Checklist and identification key to the speciesNew records of Psychodidae (Diptera) with a list of the species cited for Chile author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Anales del Instituto de la Patagonia

On-line version ISSN 0718-686X

Anales Instituto Patagonia (Chile) vol.42 no.2 Punta Arenas  2014

http://dx.doi.org/10.4067/S0718-686X2014000200006 

ARTICULOS

 

Trophic ecology of limpets among rocky intertidal in Bahia Laredo, Strait of Magellan (Chile)

 

Ecología trófica de lapas en el intermareal rocoso de bahía Laredo, estrecho de Magallanes (Chile)

 

Claudia Andrade 1, 2 & Thomas Brey2

1 Instituto de la Patagonia, Universidad de Magallanes, Punta Arenas, Chile. E-mail: Claudia.Andrade@Awi.de.

2 Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany.


Abstract

Diet composition and food sources of the limpets Nacella deaurata and Nacella magellanica were studied in a subantarctic rocky-boulder intertidal system in the Magellan Strait, on the basis of gut contents and stable isotope analyses. Green microalgae (32.5 %), brown algae (22.2 %) and red algae (21.3 %) constituted the main food items in N. deaurata while green microalgae (28.3 %), micro-bivalves (27.4 %) and foraminiferans (20.9 %) were dominant food components in N. magellanica. Relative food items contribution indicated a generalist-type trophic strategy in both species, albeit N. deaurata exhibited a more pronounced herbivory. Stable isotope ratios confirmed this omnivorous / grazer lifestyle. Our results coincide with other studies that report green microalgae to be the major food item for other Nacella species but they also contradict the common view that these limpets are herbivorous animals.

Keywords: Diet composition, stable isotopes, Gastropoda, Nacella, omnivorous, Magellan Strait.


Resumen

Se estudió la composición de la dieta y la fuente de alimentos de las lapas Nacella deaurata y Nacella magellanica en un ecosistema intermareal rocoso subantártico en el estrecho de Magallanes, sobre la base del contenido estomacal y los análisis de isótopos estables. Los principales ítems alimenticios encontrados en N. deaurata fueron microalgas verdes (32.5 %), algas pardas (22.2 %) y algas rojas (21.3 %) mientras que los componentes alimenticios dominantes en N. magellanica fueron microalgas verdes (28.3 %), micro-bivalvos (27.4 %) y foraminíferos (20.9 %). La relativa contribución alimenticia indica una estrategia de tipo trófico generalista en ambas especies. Aunque N. deaurata exhibió una herbivoría más pronunciada. Las proporciones de isótopos estables confirmaron este estilo de vida omnívoros / ramoneadores. Nuestros resultados coinciden con otros estudios que reportan a las microalgas como el mayor ítem alimenticio para otras especies de Naceüa pero estos trabajos también contradicen la idea general que estas lapas son animales herbívoros.

Palabras clave: Composición de la dieta, isótopos estables, Gastropoda, Nacella, omnívoro, Estrecho de Magallanes.


 

Introduction

Mollusks constitute a conspicuous part of the epifauna of shallow water rocky habitats in the subantarctic Magellan region (Ríos & Gerdes, 1997; Mutschke et al. 1998; Ríos & Mutschke, 1999; Ríos et al. 2007; Aldea & Rosenfeld, 2011). Besides dense assemblages of sessile filter feeding bivalves (Ríos & Gerdes op. cit.; Cattaneo-Vietti et al. 1999), limpets are the most characteristic representatives of this fauna, particularly the two species Nacella deaurata (Gmelin, 1791) and N. magellanica (Gmelin, 1791) (Thatje & Ríos, 2010). Locally they can attain comparatively high abundances, e.g. in Bahía Laredo (Strait of Magallanes) up to 7 ind m-2 for N. deaurata (Andrade, 2009)1 and up to 9 ind m-2 for N. magellanica (Guzmán & Ríos, 1987).

The significance of such mobile gastropods for rocky intertidal community structure has been documented in various systems (see Underwood, 1979, 1980; Hawkins & Hartnoll, 1983; Vadas, 1985) and their feeding activity appear to be a major structuring agent. Limpets of the genus Nacella have been reported to feed on microphytobenthos (Shabica, 19762; Brand, 19803; Picken, 1980; Kim, 2001; Peck & Veal, 2001) calcareous rhodophytes (Brand op. cit., Iken et al. 1998), and seaweeds (Iken, 1996), but also on bryozoans and sessile spirorbid polychaetes (Brand op. cit.). Alimentation of N. deaurata and N. magellanica, however, has not yet been studied systematically. The diet of these limpets has only been suggested qualitatively (Guzmán & Ríos, 1986), albeit knowledge of diets are generality essential for studies of it is nutritional requirements and it is interactions with other organisms.

This study analyses the trophic significance of N. deaurata and N. magellanica by combining stomach content analysis and stable isotope ratio determination in order to evaluate nutritional requirements and likely interactions with other species.

 

Material and methods

Sample origin and preparation

Limpets (N. deaurata and N. magellanica) were randomly collected from an intertidal boulder-cobble field at Bahía Laredo located in the eastern part of the Strait of Magellan (52°56.5'S; 70°50'W). N. deaurata is abundant in the lower intertidal zone while N. magellanica is present in the middle and upper intertidal zone. Sampling for gut content analysis was carried out during 2008/2009. Ten individuals of each species were hand-picked, preserved in 4% formaldehyde-seawater solution, placed in labeled plastic bags and transported to the laboratory at the Instituto de la Patagonia (Universidad de Magallanes) in Punta Arenas, Chile. Sampling for stable isotopes analysis was performed between January and February 2009 (austral summer). Five individuals for each species were collected and placed in labeled plastic bags and transported frozen to the laboratory at the Instituto de la Patagonia where they were stored at -20 °C prior to analysis at the Alfred Wegener Institute (AWI), Germany.

Gut content analysis

In the laboratory, the specimens were dissected and their gut contents separated. Stomachs and intestines were cut open; the content flushed into petri dishes and identified them to the finest possible taxonomic resolution under stereoscope and recorded as dietary items separately for each individual. Limpets diet was quantified using a points method (Hynes, 1950) modified by Brun (1972), Fratt & Dearborn (1984) and Dearborn et al. (1986). This method combines information on stomach fullness and volumetric contribution to diet of each food items. For further details see http://www.thomas-brey.de/science/virtualhandbook/consum/dipoints.html.

Stable isotope analysis

Samples were lyophilized and subsequently ground to an ultra-fine powder using mixer mill. Each sample was acidified to remove CaCO3 in accordance with Fry (1988) and Jacob et al. (2005). Stable isotope analysis including the determination of carbon and nitrogen concentrations was carried out at the stable isotope laboratory of the Museum für Naturkunde in Berlin using a Delta V Plus isotope ratio mass spectrometer.

Isotope ratios are expressed in conventional 5 notation in per mil (%o) relative to universal standard:

where X is 13 C or 15 N and R is the corresponding 13 C/12 C or 15 N/14 N ratio. All results are reported with respect to VPDB (PeeDee Belemnite) for δ13C and atmospheric nitrogen for δ15N.

 

Results

Gut content

Six food items contributed to the diet of. N. deaurata, green microalgae (32.5 %), brown algae (22.2 %), red algae (21.3 %), bivalves (11 %), forams (9%), and miscellaneous (<4 %) while the diet of. N. magellanica included five items, green microalgae (28.3 %), bivalves (27.4 %), foraminifera (20.9%), red algae (15.7 %), and miscellaneous (e.g. crustaceans, gastropods, all < 4 %, see Figures 1 and 2).

Fig. 1. Percentage contribution of food items to the diet of the limpet Nacella deaurata and N. magellanica. (*) indicates significant differences (P < 0.05) between species.

Fig. 2. Food items found in the guts of N. deaurata (a – c) and N. magellanica (d – f). a) cell agregation green microalgae Chlorella, b) forams Elphidium macellum, c) ostracoda indeterminada, d) crustacea indeterminada, e) bivalves Mytilus chilensis and f) gastropod Laevilittorina caliginosa.

Stable isotope composition

Mean δ13C was significantly lower in Nacella deaurata (-18.1 ± 0.1 %o) than in N. magellanica (-16.2 ± 1.1 %, one way ANOVA, F = 14.9050, P > 0.0048) whereas mean values of δ15N (12.8 ± 0.2 % and 12.9 ± 0.2 % ) did not differ significantly (P > 0.05).

 

Discussion

The overall share of algae in their diet indicates that both Nacella deaurata (76% algae) and N. magellanica (44% algae) preferably act as herbivorous grazers. Nevertheless, the presence of meiobenthic organisms such as micro-bivalves and foraminiferans in the guts indicate an ability of omnivorous feeding in both species. Albeit this tendency is more pronounced in N. magellanica, it does not show in a higher δ15N ratio. The stronger preference of Nacella deaurata for brown and red algae may explain its distinctly higher δ13C ratio (-18.1 versus -16.2), as brown algae and particularly read algae tend to have lower δ13C ratios than green algae (Andrade et al. subm.).

Our findings coincide with other studies that report green microalgae to be the major food item for other Nacella species (e.g. Shabica, 1971; Peck & Veal, 2001) but they also contradict the common view that these limpets are herbivorous animals (e.g. Brêthes et al. 1994; Ríos & Gerdes, 1997; Mutschke et al. 1998). It remains to be seen whether the omnivorous feeding patterns observed here is a response to conditions specific to the site and/or time of our study or a general feature of these species. Further work on the availability and distribution of food items in Bahía Laredo, particularly of green microalgae, may answer this question.

 

Notes

1 Andrade, C. 2009. Estructura trófica del ensamble de moluscos en el intermareal de bloques y cantos (Bahía Laredo, Estrecho de Magallanes) Tesis de Magíster, Facultad de Ciencias, Universidad de Magallanes, Chile.         [ Links ]

2 Shabica, S.V. 1976. The natural history of the Antarctic limpet Patinigera polaris (Hombron and Jacquinot). Ph. D thesis, Oregon State University, Corvallis, Oregon, USA.         [ Links ]

3 Brand, T. E. 1980. Trophic interactions and community ecology of the shallow marine benthos along the Antarctic Peninsula. Ph. D thesis, University of Davis, California.         [ Links ]

 

Literature cited

Aldea, C. & Rosenfeld, S. (2011). Macromoluscos intermareales de sustratos rocosos de la playa Buque Quemado, Estrecho de Magallanes, sur de Chile. Revista de Biología MarinaOceanografía, 46(2): 115-124.         [ Links ]

Brêthes, J. C., G. Ferreyra & De la Vega, S. (1994). Distribution, growth and reproduction of the limpet Nacella (Patinigera) concinna (Strebel 1908) in relation to potential food availability, in Esperanza Bay (Antarctic Peninsula). Polar Biology, 14: 161-170.         [ Links ]

Brun, E. 1972. Food and feeding habits of Luidia ciliaris Echinodermata: Asteroidea. Journal of the Marine Biological Association of the United Kingdom, 52: 225-236.         [ Links ]

Cattaneo-Vietti, R., M. Chiantore, C. Misic, P. Povero & Fabiano, M. (1999). The role of pelagic-benthos coupling in structuring littoral benthic communities at Terra Nova (Ross Sea) and in the Straits of Magellan. Scientia Marina 63 (Suppl. 1): 113-121.         [ Links ]

Dearborn, J. H., F. D. Ferrari & Edwards, K. C. (1986). Can pelagic aggregations cause benthic satiation? Feeding biology of the Antarctic brittle star Astrotoma agassizii (Echinodermata: Ophiuroidea). Antarctic Research Series 44 (Biology of the Antarctic Seas XVII): 1-28.         [ Links ]

Fratt, D. B. & Dearborn, J. H. (1984). Feeding biology of the Antarctic brittle star Ophionotus victoriae (Echinodermata: Ophiuroidea). Polar Biology, 3: 127-139.         [ Links ]

Fry, B. (1988). Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnology and Oceanography, 33: 1182-1190.         [ Links ]

Guzmán, L. & Ríos, C. (1986). Análisis de la estructura en comunidades intermareales del Cabo de Hornos: ambientes de bloques y cantos. Estudios Oceanológicos, 5: 67-105.         [ Links ]

Guzmán, L. & Ríos, C. (1987). Age and growth of the subantarctic limpet Nacella (Patinigera) magellanica magellanica (Gmelin, 1791) from the Strait of Magellan, Chile. Veliger, 30(2): 159-166.         [ Links ]

Hawkins, S. J. & Hartnoll, R. G. (1983). Grazing of intertidal algae by marine invertebrates. Oceanography and Marine Biology - An Annual Review, 21: 195-282.         [ Links ]

Hynes, H. B. (1950). The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. Journal of Animal Ecology, 19: 36-58.         [ Links ]

Iken, K. (1996). Trophische Beziehungen zwischen Makroalgen und Herbivoren in der Potter Cove (King George Insel, Antarktis). Berichte zur Polarforschung, 201: 1-216.         [ Links ]

Iken, K., M. L. Quartino, E. Barrera-Oro, J. Palermo, C. Wiencke & Brey, T. (1998). Trophic relations between macroalgae and herbivores. In: Wiencke C., G. Ferreyra, W. Arntz & C. Rinaldi (eds). The Potter Cove coastal ecosystem, Antarctica. Berichte zur Polarforschung, 299: 258-262.         [ Links ]

Jacob, U., K. Mintenbeck, T. Brey, R. Knust & Beyer, K. (2005) Stable isotope food web studies: a case for standardized sample treatment. Marine Ecology Progress Series, 287: 251-253.         [ Links ]

Kim, D. (2001). Seasonality of marine algae and grazers of an Antarctic rocky intertidal, with emphasis on the role of the limpet Nacella concinna Strebel (Gastropoda: Patellidae). Berichte zur Polar und Meeresforschung, 397: 1-136.         [ Links ]

Mutschke, E., C. Ríos & Montiel, A. (1998). Situación actual de la macrofauna presente en el intermareal de bloques y cantos de Bahía Laredo Estrecho de Magallanes. Anales Instituto Patagonia, Serie Ciencias Naturales, 26: 5-29.         [ Links ]

Peck, L. S. & Veal, R. (2001). Feeding, metabolism and growth in the Antarctic limpet, NaceHa concinna (Strebel 1908). Marine Biology, 138: 553-560.         [ Links ]

Picken, G. B. (1980). The distribution, growth and reproduction of the Antarctic limpet Nacella (Patinigera) concinna (Strebel 1908). Journal of Experimental Marine Biology and Ecology, 42: 71-85.         [ Links ]

Ríos, C. & Gerdes, D. (1997). Ensamble bentónico epifaunístico de un campo intermareal de bloques y cantos en Bahía Laredo, Estrecho de Magallanes. Anales Instituto Patagonia, Serie Ciencias Naturales, 18: 35-41.         [ Links ]

Ríos, C. & Mutschke, E. (1999). Community structure of intertidal boulder-cobble fields in the Straits of Magellan, Chile. Scientia Marina 63 (Suppl. 1): 193-201.         [ Links ]

Ríos, C., W. Arntz, D. Gerdes, E. Mutschke & Montiel, A. (2007). Spatial and temporal variability of the benthic assemblages associated to the holdfasts of the kelp Macrocystis pyrifera in the Straits of Magellan, Chile. Polar Biology, 31: 89-100.         [ Links ]

Shabica, S. V. (1971). The general ecology of the antarctic limpet Patinigera polaris. Antarctic Journal of the United States, 6: 160-162.         [ Links ]

Thatje, S. & Ríos, C. (2010). Subantarctic limpet populations today and human impact about 1,400 years ago. Anales Instituto de la Patagonia, 38(1): 97-102.         [ Links ]

Underwood, A. J. (1979). The ecology of intertidal gastropods. Advances in Marine Biology, 16: 111-210.         [ Links ]

Underwood, A. J. (1980). The effects of grazing by gastropods and physical factors On the upper limits of distribution of intertidal macroalgae. Oecologia, 46: 201-213.         [ Links ]

Vadas, R. L. 1985. Herbivory. In: Littler, M. M. & D. S. Littler (eds.) Ecological fields methods: macroalgae (pp. 531-572). Cambridge University Press, Cambridge, New York.         [ Links ]


ACKNOWLEDGEMENTS: To the Laboratorio de Ecología & Ciencias Ambientales, Instituto de la Patagonia, Universidad de Magallanes for providing partly of the resources for this research.

We thank Kerstin Beyer at Alfred Wegener Institute for her help during the sample preparation of the material for the Stable Isotopes Analyses.

This article was a part of a master and doctoral research work from the first author CA.

Received: Oct. 09, 2014; Accepted: Oct. 22, 2014.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License