SciELO - Scientific Electronic Library Online

vol.12 número2A new solution algorithm for skip-free processes to the leftFixed point theory for compact absorbing contractions in extension type spaces índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google


Cubo (Temuco)

versão On-line ISSN 0719-0646

Cubo vol.12 no.2 Temuco  2010 

CUBO A Mathematical Journal Vol.12, N° 02, (189-197). June 2010


Fischer decomposition by inframonogenic functions


Helmuth R. Malonek1, Dixan Peña Peña2 and Frank Sommen

Department of Mathematics, Aveiro University, 3810-193 Aveiro, Portugal 1email: 2 email:,

Department of Mathematical Analysis, Ghent University, 9000 Gent, Belgium email:


Let δx denote the Dirac operator in Rm. In this paper, we present a refinement of the biharmonic functions and at the same time an extension of the monogenic functions by considering the equation δxf δx = 0. The solutions of this “sandwich” equation, which we call inframonogenic functions, are used to obtain a new Fischer decomposition for homogeneous polynomials in Rm.

Key words and phrases: Inframonogenic functions; Fischer decomposition.


Denotemos por δx el operador de Dirac en Rm. En este artículo, nosotros presentamos un refinamiento de las funciones biarmónicas y al mismo tiempo una extensión de las funciones monogénicas considerando la ecuación δxx = 0. Las soluciones de esta ecuación tipo “sándwich”, las cuales llamaremos inframonogénicas, son utilizadas para obtener una nueva descomposición de Fischer para polinomios homogéneos en Rm.

Mathematics Subject Classification: 30G35; 31B30; 35G05.


[1] S. Bock and K. Gürlebeck, On a spatial generalization of the Kolosov-Muskhelishvili formulae, Math. Methods Appl. Sci. 32 (2009), no. 2, 223-240.         [ Links ]

[2] F. Brackx, On (k)-monogenic functions of a quaternion variable, Funct. theor. Methods Differ. Equat. 22-44, Res. Notes in Math., no. 8, Pitman, London, 1976.         [ Links ]

[3] F. Brackx, Non-(k)-monogenic points of functions of a quaternion variable, Funct. theor. Meth. part. Differ. Equat., Proc. int. Symp., Darmstadt 1976, Lect. Notes Math. 561, 138-149.         [ Links ]

[4] F. Brackx, R. Delanghe and F. Sommen, Clifford analysis, Research Notes in Mathematics, 76, Pitman (Advanced Publishing Program), Boston, MA, 1982.         [ Links ]

[5] P. Cerejeiras, F. Sommen and N. Vieira, Fischer decomposition and special solutions for the parabolic Dirac operator, Math. Methods Appl. Sci. 30 (2007), no. 9, 1057-1069.         [ Links ]

[6] W. K. Clifford, Applications of Grassmann's Extensive Algebra, Amer. J. Math. 1 (1878), no. 4, 350-358.         [ Links ]

[7] H. De Bie and F. Sommen, Fischer decompositions in superspace, Function spaces in complex and Clifford analysis, 170-188, Natl. Univ. Publ. Hanoi, Hanoi, 2008.         [ Links ]

[8] R. Delanghe, F. Sommen and V. Soucek, Clifford algebra and spinor-valued functions, Mathematics and its Applications, 53, Kluwer Academic Publishers Group, Dordrecht, 1992.         [ Links ]

[9] D. Eelbode, Stirling numbers and spin-Euler polynomials, Experiment. Math. 16 (2007), no. 1, 55-66.         [ Links ]

[10] N. Faustino and U. Kähler, Fischer decomposition for difference Dirac operators, Adv. Appl. Clifford Algebr. 17 (2007), no. 1, 37-58.         [ Links ]

[11] K. Gürlebeck and U. Kähler, On a boundary value problem of the biharmonic equation, Math. Methods Appl. Sci. 20 (1997), no. 10, 867-883.         [ Links ]

[12] H. R. Malonek and G. Ren, Almansi-type theorems in Clifford analysis, Math. Methods Appl. Sci. 25 (2002), no. 16-18, 1541-1552.         [ Links ]

[13] V. V. Meleshko, Selected topics in the history of the two-dimensional biharmonic problem, Appl. Mech. Rev. 56 (2003), no. 1, 33-85.         [ Links ]

[14] G. Ren and H. R. Malonek, Almansi decomposition for Dunkl-Helmholtz operators, Wavelet analysis and applications, 35-42, Appl. Numer. Harmon. Anal., Birkhäuser, Basel, 2007.         [ Links ]

[15] J. Ryan, Basic Clifford analysis, Cubo Mat. Educ. 2 (2000), 226-256.         [ Links ]

[16] L. Sobrero, Theorie der ebenen Elastizität unter Benutzung eines Systems hyperkomplexerZahlen, Hamburg. Math. Einzelschriften, Leipzig, 1934.         [ Links ]

[17] F. Sommen, Monogenic functions of higher spin, Z. Anal. Anwendungen 15 (1996), no. 2, 279-282.         [ Links ]

[18] F. Sommen and N. Van Acker, Functions of two vector variables, Adv. Appl. Clifford Algebr. 4 (1994), no. 1, 65-72.         [ Links ]

Received: March 2009.

Revised: May 2009.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons