SciELO - Scientific Electronic Library Online

 
vol.13 número1q− Fractional InequalitiesEngineering Design under Imprecise Probabilities: Computational Complexity índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.13 no.1 Temuco  2011

http://dx.doi.org/10.4067/S0719-06462011000100006 

CUBO A Mathematical Journal Vol.13, N° 01, (73-101). March 2011

CONTENTS

 

Existence of Pseudo Almost Automorphic Solutions to a Nonautonomous Heat Equation

 

Toka Diagana

Department of Mathematics, Howard University, 2441 6th Street NW, Washington, DC 20005 - USA. email: tokadiag@gmail.com


ABSTRACT

In this paper, upon making some suitable assumptions, we obtain the existence of pseudo-almost automorphic solutions to a nonautonomous heat equation with gradient coefficients.

Keywords: Pseudo almost periodicity; almost automorphic; pseudo almost automorphic; Sp- pseudo almost automorphic; Sp-almost automorphic; Sp-pseudo almost periodic; Acquistapace and Terreni conditions; intermediate space; exponential dichotomy.


RESUMEN

En este trabajo, al hacer algunos supuestos adecuados, se obtiene la existencia de pseudo soluciones automorfas a una ecuacin del calor no autnoma con coeficientes degradados.

AMS Subject Classification: 43A60; 34G20.


References

[1] P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations 1 (1988), 433-457.         [ Links ]

[2] P. Acquistapace, F. Flandoli, B. Terreni, Initial boundary value problems and optimal control for nonautonomous parabolic systems. SIAM J. Control Optim. 29 (1991), 89-118.         [ Links ]

[3] P. Acquistapace, B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova 78 (1987), 47-107.         [ Links ]

[4] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Berlin 1995.         [ Links ]

[5] B. Amir and L. Maniar, Existence and some asymptotic behaviors of solutions to semilinear Cauchy problems with non dense domain via extrapolation spaces, Rend. Circ. Mat. Palermo (2000) 481-496.         [ Links ]

[6] B. Amir and L. Maniar, Composition of Pseudo-Almost Periodic Functions and Cauchy Problems with Perator of Nondense Domain. Ann. Math. Blaise Pascal 6 (1999), no. 1, pp. 1-11.         [ Links ]

[7] M. Baroun, S. Boulite, T. Diagana, and L. Maniar, Almost periodic solutions to some semilinear non-autonomous thermoelastic plate equations. J. Math. Anal. Appl. 349(2009), no. 1, 74-84.         [ Links ]

[8] S. Bochner, Continuous mappings of almost automorphic and almost periodic functions, Proc. Nat. Acad. Sci. USA 52 (1964), pp. 907-910.         [ Links ]

[9] M. Baroun, S. Boulite, G. M. N'Guérékata, and L. Maniar, Almost automorphy of Semilinear Parabolic Equations. Electron. J. Differential Equations 2008(2008), no. 60, 1-9.         [ Links ]

[10] S. Boulite, L. Maniar, and G. M. N'Guérékata, Almost Automorphic Solutions for Hyperbolic Semilniear Evolution Equations, Semigroup Forum. Vol. 71 (2005), 231-240.         [ Links ]

[11] D. Bugajewski and T. Diagana, Almost Automorphy of the Convolution Operator and Applications to Differential and Functional-Differential Equations, Nonlinear Stud. 13 (2006), no. 2, pp. 129-140.         [ Links ]

[12] D. Bugajewski, T. Diagana, C. M. Mahop, Asymptotic and Pseudo Almost Periodicity of the Convolution Operator and Applications to Differential and Integral Equations. Z. Anal. Anwend. 25 (2006), no. 3, 327-340.         [ Links ]

[13] P. Cieutat and K. Ezzinbi, Existence, uniqueness and attractiveness of a pseudo almost automorphic solutions for some dissipative differential equations in Banach spaces. J. Math. Anal. Appl. 354 (2009), no. 2, 494-506.         [ Links ]

[14] G. Da Prato and P. Grisvard, Equations d'évolution abstraites non linéaires de type parabolique. Ann. Mat. Pura Appl. (4) 120 (1979) pp. 329-396.         [ Links ]

[15] T. Diagana, Stepanov-like pseudo almost periodic functions and their applications to differential equations, Commun. Math. Anal. 3(2007), no. 1, pp. 9-18.         [ Links ]

[16] T. Diagana, Stepanov-like pseudo almost periodicity and its applications to some nonautonmous differential Equations. Nonlinear Anal. 69 (2008), no. 12, 4277-4285.         [ Links ]

[17] T. Diagana, Existence of pseudo-almost automorphic solutions to some abstract differential equations with Sp-pseudo-almost automorphic coefficients. Nonlinear Anal. 70 (2009), no. 11, 3781-3790.         [ Links ]

[18] T. Diagana, Pseudo almost periodic functions in Banach spaces. Nova Science Publishers, Inc., New York, 2007.         [ Links ]

[19] T. Diagana and E. Hernández M., Existence and Uniqueness of Pseudo Almost Periodic Solutions to Some Abstract Partial Neutral Functional-Differential Equations and Applications, J. Math. Anal. Appl. 327(2007), no. 2, pp. 776-791.         [ Links ]

[20] T. Diagana, Existence and Uniqueness of Pseudo Almost Periodic Solutions to Some Classes of Partial Evolution Equations. Nonlinear Anal. 66 (2007), no. 2, 384-395.         [ Links ]

[21] T. Diagana and G. M. N'Guérékata, Pseudo Almost Periodic Mild Solutions To Hyperbolic Evolution Equationa in Abstract Intermediate Banach Spaces. Applicable Anal. 85 (2006), Nos. 6-7, pp. 769-780.         [ Links ]

[22] T. Diagana, N. Henríquez, and E. Hernández, Almost automorphic mild solutions to some partial neutral functional-differential Equations and Applications. Nonlinear Anal. 69 (2008), no. 5, pp. 1485-1493.         [ Links ]

[23] T. Diagana and G. M. N'Guérékata, Almost automorphic solutions to some classes of partial evolution equations. Appl. Math. Lett. 20 (2007), no. 4, pp. 462-466.         [ Links ]

[24] K. J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Graduate texts in Mathematics, Springer Verlag 1999.         [ Links ]

[25] K. Ezzinbi, S. Fatajou and G. M. NGuérékata, Pseudo almost automorphic solutions to some neutral partial functional differential equations in Banach space. Nonlinear Anal. 70 (2009), no. 4, 1641-1647.         [ Links ]

[26] K. Ezzinbi, S. Fatajou and G. M. NGuérékata, Pseudo almost automorphic solutions for dissipative differential equations in Banach spaces. J. Math. Anal. Appl. 351 (2009), no. 2, 765-772.         [ Links ]

[27] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics 377, Springer-Verlag, New York-Berlin, 1974.         [ Links ]

[28] E. Hernández and H. R. Henríquez, Existence of Periodic Solutions of Partial neutral Functional Differential Equations with Unbounded Delay. J. Math. Anal. Appl 221 (1998), no. 2, pp. 499-522.         [ Links ]

[29] E. Hernández, Existence Results for Partial Neutral Integro-differential Equations with Unbounded Delay. J. Math. Anal. Appl 292 (2004), no. 1, pp. 194-210.         [ Links ]

[30] E. Hernández M., M. L. Pelicer, and J. P. C. dos Santos, Asymptotically Almost Periodic and Almost Periodic Solutions for a Class of Evolution Equations, Electron. J. Diff. Eqns 2004(2004), no. 61, pp. 1-15.         [ Links ]

[31] Y. Hino, T. Naito, N. V. Minh, and J. S. Shin, Almost Periodic Solutions of Differential Equations in Banach Spaces. Stability and Control: Theory, Methods and Applications, 15. Taylor and Francis, London, 2002.         [ Links ]

[32] J.-L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation. Inst. Hautes tudes Sci. Publ. Math., no. 19 (1964), pp. 5-68.         [ Links ]

[33] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, PNLDE Vol. 16, Birkhäauser Verlag, Basel, 1995.         [ Links ]

[34] J. Liang, J. Zhang, and T-J. Xiao, Composition of Pseudo Almost Automorphic and Asymptotically almost automorphic functions. J. Math. Anal. Appl. 340 (2008), no. 1493-1499.         [ Links ]

[35] J. Liang, G. M. N'Guérékata, T-J. Xiao, and J. Zhang, Some properties of pseudo almost automorphic functions and applications to abstract differential equations. Nonlinear Anal. 70 (2009), no. 7, 2731-2735.         [ Links ]

[36] L. Maniar, R. Schnaubelt, Almost periodicity of inhomogeneous parabolic evolution equations, Lecture Notes in Pure and Appl. Math. Vol. 234, Dekker, New York (2003), 299-318.         [ Links ]

[37] M. G. Naso, A. Benabdallah, Thermoelastic plate with thermal interior control, Mathematical models and methods for smart materials (Cortona, 2001), 247-250, Ser. Adv. Math. Appl. Sci., 62, World Sci. Publ., River Edge, NJ, 2002.         [ Links ]

[38] G. M. N'Guérékata, Almost automorphic functions and almost periodic functions in abstract spaces, Kluwer Academic / Plenum Publishers, New York-London-Moscow, 2001.         [ Links ]

[39] G. M. N'Guérékata, Topics in almost automorphy, Springer, New york, Boston, Dordrecht, Lodon, Moscow 2005.         [ Links ]

[40] G. M. N'Guérékata and A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal. 68 (2008), no. 9, pp. 2658-2667.         [ Links ]

[41] A. Pankov, Bounded and almost periodic solutions of nonlinear operator differential equations, Kluwer, Dordrecht, 1990.         [ Links ]

[42] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.         [ Links ]

[43] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, 1993.         [ Links ]

[44] R. Schnaubelt, Sufficient conditions for exponential stability and dichotomy of evolution equations, Forum Math. 11(1999), 543-566.         [ Links ]

[45] R. Schnaubelt, Asymptotically autonomous parabolic evolution equations, J. Evol. Equ. 1 (2001), 19-37.         [ Links ]

[46] R. Schnaubelt, Asymptotic behavior of parabolic nonautonomous evolution equations, in: M. Iannelli, R. Nagel, S. Piazzera (Eds.), Functional Analytic Methods for Evolution Equations, in: Lecture Notes in Math., 1855, Springer-Verlag, Berlin, 2004, 401-472.         [ Links ]

[47] T-J. Xiao, J. Liang, J. Zhang, Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces. Semigroup Forum 76 (2008), no. 3, 518-524.         [ Links ]

[48] Ti-J. Xiao, X-X. Zhu, J. Liang, Pseudo-almost automorphic mild solutions to nonautonomous differential equations and applications. Nonlinear Anal. 70 (2009), no. 11, 4079- 4085.         [ Links ]

[49] A. Yagi, Parabolic equations in which the coefficients are generators of infinitely differentiable semigroups II, Funkcial. Ekvac. 33 (1990), 139-150.         [ Links ]

[50] A. Yagi, Abstract quasilinear evolution equations of parabolic type in Banach spaces, Boll. Un. Mat. Ital. B (7) 5 (1991), 341-368.         [ Links ]

[51] S. Zaidman, Topics in Abstract Differential Equations, Pitman Research Notes in Mathematics Ser. II John Wiley and Sons, New York, 1994-1995.         [ Links ]


Received: October 2009.

Revised: November 2009.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons