SciELO - Scientific Electronic Library Online

 
vol.13 número1Multiple Objective Programming Involving Differentiable (Hp, r)-invex Functions índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.13 no.1 Temuco  2011

http://dx.doi.org/10.4067/S0719-06462011000100009 

CUBO A Mathematical Journal Vol.13, Nº01, (137–147). March 2011

CONTENTS

 

Strong convergence of an implicit iteration process for a finite family of strictly asymptotically pseudocontractive mappings

 

Gurucharan Singh Saluja and Hemant Kumar Nashine

Department of Mathematics & Information Technology, Govt. Nagarjuna P.G. College of Science, Raipur (C.G.), India.
email: saluja_1963@rediffmail.com

Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg Mandir Hasaud, Raipur-492101(Chhattisgarh), India. email: hnashine@rediffmail.com, nashine_09@rediffmail.com.


ABSTRACT


In this paper, we establish the strong convergence theorems for a finite family of kstrictly asymptotically pseudo-contractive mappings in the framework of Hilbert spaces. Our results improve and extend the corresponding results of Liu [5] and many others.

Keywords: Strictly asymptotically pseudo-contractive mapping, implicit iteration scheme, common fixed point, strong convergence, Hilbert space.


RESUMEN


En este trabajo, hemos establecido los teoremas de convergencia para una familia finita de asignaciones de k-estrictamente asintticamente pseudo-contraccin en el marco de los espacios de Hilbert.
Nuestros resultados mejoran y amplan los resultados correspondientes de Liu [5] y muchos otros.

AMS Subject Classification: 47H09, 47H10.


References

[1] G.L. Acedo and H.K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 67(2007), 2258-2271.         [ Links ]

[2] F.E. Browder and W.V. Ptryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20(1967), 197-228.         [ Links ]

[3] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1972), 171-174.         [ Links ]

[4] F. Gu, The new composite implicit iterative process with errors for common fixed points of a finite family of strictly pseudocontractive mappings, J. Math. Anal. Appl. 329(2) (2007), 766-776.         [ Links ]

[5] Q. Liu, Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal. 26(1996), 1835-1842.         [ Links ]

[6] M.O. Osilike, Iterative approximation of fixed points of asymptotically demicontractive mappings, Indian J. Pure Appl. Math. 29(12), December 1998, 1291-1300.         [ Links ]

[7] M.O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294(1)(2004), 73-81.         [ Links ]

[8] M.O. Osilike and A. Udomene, Demiclosedness principle and convergence results for strictly pseudocontractive mappings of Browder-Petryshyn type, J. Math. Anal. Appl. 256(2001), 431-445.         [ Links ]

[9] M.O. Osilike, S.C. Aniagbosor and B.G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, PanAm. Math. J. 12(2002), 77-78.         [ Links ]

[10] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67(1979), 274-276.         [ Links ]

[11] Y. Su and S. Li, Composite implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 320(2)(2006), 882-891.         [ Links ]

[12] H.K. Xu and R.G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22(2001), 767-773.         [ Links ]


Received: June 2009.

Revised: November 2009.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons