SciELO - Scientific Electronic Library Online

vol.13 número2Closure of Pointed Cones and Maximum Principle in Hilbert SpacesDegree theory for the sum of VMO maps and maximal monotone maps índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados


Cubo (Temuco)

versão On-line ISSN 0719-0646

Cubo vol.13 no.2 Temuco jun. 2011 

CUBO A Mathematical Journal Vol.13, Nº 02, (85-117). June 2011

Differential forms versus multi-vector functions in Hermitean Clifford analysis

F. Brackx, H. De Schepper and V. Souek
Ghent University Faculty of Engineering Department of Mathematical Analysis Gent, Belgium email:

Charles University Faculty of Mathematics and Physics Praha, Czech Republic

Similarities are shown between the algebras of complex differential forms and of complex Clifford algebra-valued multi-vector functions in an open region of Euclidean space of even dimension.

Keywords and phrases: complex differential forms, multi-vector functions, Hermitean Clifford
analysis. Mathematics Subject Classification: 30G35.

Se presentan las similitudes entre las álgebras de formas diferenciales complejas y de las funciones de álgebras de Clifford complejas con valores de múltiples vectores aplicados en una región abierta del espacio euclidiano de dimensión par.


[1] F. Brackx , J. Bureš, H. De Schepper, D. Eelbode, F. Sommen and V. Souček, Fundaments of Hermitean Clifford Analysis. Part I: Complex structure, Compl. Anal. Oper. Theory 1(3), 2007, 341-365.         [ Links ]

[2] F. Brackx, J. Bureš, H. De Schepper, D. Eelbode, F. Sommen and V. Souček, Fundaments of Hermitean Clifford Analysis. Part II: Splitting of h-monogenic equations, Complex Var. Elliptic Eq. 52(10-11), 2007, 1063-1079.         [ Links ]

[3] F. Brackx, B. De Knock and H. De Schepper, A matrix Hilbert transform in Hermitean Clifford analysis, J. Math. Anal. Appl. 344 (2008), 1068-1078.         [ Links ]

[4] F. Brackx, B. De Knock, H. De Schepper and F. Sommen, On Cauchy and Martinelli- Bochner integral formulae in Hermitean Clifford analysis, Bull. Braz. Math. Soc. New Series 40(3), 2009, 395-416.         [ Links ]

[5] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Publishers, Boston-London-Melbourne,1982.         [ Links ]

[6] F. Brackx, R. Delanghe and F. Sommen, Differential forms and/or multivector functions, Cubo 7(2), 2005, 139-169.         [ Links ]

[7] F. Brackx, H. De Schepper, D. Eelbode and V. Souček, The Howe dual pair in Hermitean Clifford analysis, accepted for publication in Rev. Mat. Iberoam. 26(2), 2010, 449-479.         [ Links ]

[8] F. Brackx, H. De Schepper and F. Sommen, A theoretical framework for wavelet analysis in a Hermitean Clifford setting, Comm. Pure Appl. Anal. 6(3), 2007, 549-567.         [ Links ]

[9] F. Brackx, H. De Schepper and F. Sommen, The Hermitian Clifford analysis toolbox, Appl. Clifford Algebras 18(3-4), 2008, 451-487.         [ Links ]

[10] F. Brackx, H. De Schepper and V. Souček, On the Structure of Complex Clifford Algebra Adv. Appl. Clifford Alg. DOI: 10.1007/s0006-010-0270-4.         [ Links ]

[11] F. Brackx, H. De Schepper and V. Souček, Hermitean Clifford Analysis on Kählerian manifolds (in preparation)         [ Links ].

[12] A. Damiano, D. Eelbode and I. Sabadini, Invariant syzygies for the Hermitian Dirac operator, Math. Zeitschrift 262, 2009, 929-945.         [ Links ]

[13] R. Delanghe, R. Lávička and V. Souček, On polynomial solutions of generalized Moisil-Théodoresco systems and Hodge-de Rham systems (arXiv: 0908.0842)         [ Links ].

[14] R. Delanghe, R. Lávička and V. Souček, The Fischer decomposition for Hodge-de Rham systems in Euclidean spaces (arXiv: 1012.4994)         [ Links ].

[15] R. Delanghe, F. Sommen and V. Souček, Clifford Algebra and Spinor-Valued Functions, Kluwer Academic Publishers, Dordrecht, 1992.         [ Links ]

[16] D. Eelbode, Stirling numbers and spin-Euler polynomials, Exp. Math. 16(1) (2007), 55-66.         [ Links ]

[17] J. Gilbert and M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge University Press, Cambridge, 1991.         [ Links ]

[18] K. Gürlebeck, K. Habetha and W. Sprössig, Holomorphic Functions in the Plane and n-dimensional Space, Birkhäuser Verlag, Basel, 2008.         [ Links ]

[19] K. Maurin, Analysis, part II, D. Reidel Publishing Company, Dordrecht - Boston - London, PWN-Polish Scientific Publishers, Warszawa, 1980.         [ Links ]

[20] M. L. Michelsohn, Clifford and Spinor Cohomology of Kähler Manifolds, American Journal of Mathematics 102(6) (1980), 1083-1146.         [ Links ]

[21] A. Moroianu, Lectures on Kähler geometry, London Mathematical Society Student Texts 69, Cambridge University Press (Cambridge, 2007)         [ Links ].

[22] I. R. Porteous, Topological Geometry, Van Nostrand Reinhold Company, London - New York - Toronto - Melbourne, 1969.         [ Links ]

[23] I. Sabadini and F. Sommen, Hermitian Clifford analysis and resolutions, Math. Meth. Appl. Sci. 25 (16-18) (2002), 1395-1414.         [ Links ]

[24] C. von Westenholz, Differential Forms in Mathematical Physics, Stud. Math. Appl., vol 3, North-Holland, Amsterdam, 1978.         [ Links ]

Received: December 2009. Revised: April 2010.



Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons