SciELO - Scientific Electronic Library Online

vol.13 número3Sum and Difference Compositions in Discrete Fractional Calculus índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.13 no.3 Temuco oct. 2011 

CUBO A Mathematical Journal Vol.13, Nº03, (185-196). October 2011


Linear Convergence Analysis for General Proximal Point Algorithms Involving (H,η)- Monotonicity Frameworks


Ram U. Verma

Texas A&M University at Kingsville, Department of Mathematics, Kingsville, Texas 78363, USA. email:


General framework for the generalized proximal point algorithm, based on the notion of (H,r)- monotonicity, is developed. The linear convergence analysis for the generalized proximal point algorithm to the context of solving a class of nonlinear variational inclusions is examined, The obtained results generalize and unify a wide range of problems to the context of achieving the linear convergence for proximal point algorithms.

Keywords. General cocoerciveness, Variational inclusions, Maximal monotone mapping, (H,r) - monotone mapping, Generalized proximal point algorithm, Generalized resolvent operator.

Mathematics Subject Classification: 49J40, 47H10, 65B05.


Se desarrolla un marco general para el algoritmo de punto proximal generalizado, basado en la noción de (H,r)- monotonia. Se examina el analisis de convergencia lineal para el algoritmo de punto proximal generalizado en el contexto de la resolucion de una clase de inclusiones no lineales variacional. Los resultados obtenidos generalizan y unifican una amplia gama de problemas en el contexto de lograr la convergencia lineal de los algoritmos punto proximal.


[1] R. P. Agarwal, and R. U. Verma, Inexact A-proximal point algorithm and applications to nonlinear variational inclusion problems, Journal of Optimization Theory and Applications 144 (3) (2010), 431-444.         [ Links ]

[2] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York, New York, 1982.         [ Links ]

[3] J. Douglas, and H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables, Transactions of the American Mathematical Society 82 (1956), 421-439.         [ Links ]

[4] J. Eckstein, Splitting methods for monotone operators with applications to parallel optimization, Doctoral dissertation, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1989.         [ Links ]

[5] J. Eckstein, Nonlinear proximal point algorithm using Bregman functions, with applications to convex programming, Mathematics ofOperations Research 18 (1993), 203-226.         [ Links ]

[6] J. Eckstein, Approximation iterations in Bregman-function-based proximal algorithm, Mathematical Programming 83 (1998), 113-123.         [ Links ]

[7] J. Eckstein, and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming 55 (1992), 293-318.         [ Links ]

[8] J. Eckstein, and M. C. Ferris, Smooth methods of multipliers for complementarity problems, Mathematical Programming 86 (1999), 65-90.         [ Links ]

[9] Y. P. Fang, and N. J. Huang, H- monotone operators and system of variational inclusions, Communications on Applied Nonlinear Analysis 11 (1)(2004), 93-101.         [ Links ]

[10] Y. P. Fang, N. J. Huang, and H. B. Thompson, A new system of variational inclusions with (H,n)- monotone operators, Computers and Mathematics with Applications 49 (2-3)(2005), 365-374.         [ Links ]

[11] M. C. Ferris, Finite termination of the proximal point algorithm, Mathematical Programming 50 (199), 359-366.         [ Links ]

[12] M. M. Jin, Perturbed algorithm and stability for strongly monotone nonlinear quasi-variational inclusions involving H- accretive operators, Mathematical Inequalities & Applications (in press).         [ Links ]

[13] M. M. Jin, Iterative algorithm for a new system of nonlinear set-valued variational inclusions involving (H,n)- monotone mappings, Journal of Inequalities in Pure and Applied Mathematics (in press).         [ Links ]

[14] H. Y. Lan, A class of nonlinear (A,n)- monotone operator inclusion problems with relaxed cocoercive mappings, Advances in Nonlinear Variational Inequalities 9 (2)(2006), 1-11.         [ Links ]

[15] H. Y. Lan, J. H. Kim, and Y. J. Cho, On a new class of nonlinear A-monotone multivalued variational inclusions, Journal ofMathematical Analysis and Applications (in press).         [ Links ]

[16] H. Y. Lan, New resolvent operator technique for a class of general nonlinear (A,n)- equations in Banach spaces, International Journal ofApplied Mathematical Sciences (in press).         [ Links ]

[17] Z. Liu, J. S. Ume, and S. M. Kang, Generalized nonlinear variational-like inequalities in reflexive Banach spaces, Journal of Optimization Theory and Applications 126 (1)(2002), 157-174.         [ Links ]

[18] B. Martinet, Regularisation d'inequations variationnelles par approximations successives. Rev. Francaise Inform. Rech. Oper. Ser. R-3 4 (1970), 154-158.         [ Links ]

[19] A. Moudafi, Mixed equilibrium problems: Sensitivity analysis and algorithmic aspect, Computers and Mathematics with Applications 44(2002), 1099-1108.         [ Links ]

[20] A. Moudafi, Proximal methods for a class of relaxed nonlinear variational inclusions, Advances in Nonlinear Vriational Inequalities 9 (2) (2006), 59-64        [ Links ]

[21] J. -S. Pang, Complementarity problems, Handbook of Global Optimization ( edited by R. Horst and P. Pardalos), Kluwer Academic Publishers, Boston, MA, 1995, pp. 271-338.         [ Links ]

[22] S. M. Robinson, Composition duality and maximal monotonicity, Mathematical Programming 85(1999), 1-13.         [ Links ]

[23 S. M. Robinson, Linear convergence of epsilon-subgradient descent methods for a class of convex functions, Mathematical Programming 86(1999), 41-50.         [ Links ]

[24] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific Journal of Mathematics 33 (1970),209-216.         [ Links ]

[25] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal of Control and Optimization 14 (1976), 877-898.         [ Links ]

[26] R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Mathematics ofOperations Research 1 (1976), 97-116.         [ Links ]

[27] R. T. Rockafellar, and R. J-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.         [ Links ]

[28 M. V. Solodov, and B. F. Svaiter, An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions, Mathematics ofOperations Research 25 (2)(2000), 214-230.         [ Links ]

[29] P. Tossings,The perturbed proximal point algorithm and some of its applications , Applied Mathematics and Optimization 29 (1994), 125-159.         [ Links ]

[30] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM Journal ofControl and Optimization 29(1991), 119-138.         [ Links ]

[31] P. Tseng, Alternating projection-proximal methods for convex programming and variational inequalities, SIAM Journal ofOptimization 7(1997), 951-965.         [ Links ]

[32] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM Journal of Control and Optimization 38(2000), 431 446.         [ Links ]

[33] R. U. Verma, New class of nonlinear A- monotone mixed variational inclusion problems and resolvent operator technique, Journal ofComputational Analysis and Applications 8(3)(2006), 275-285.         [ Links ]

[34] R. U. Verma, Nonlinear A- monotone variational inclusion systems and the resolvent operator technique, Journal ofApplied Functional Analysis 1(1)(2006), 183-190.         [ Links ]

[35] R. U. Verma, A- monotonicity and its role in nonlinear variational inclusions, Journal of Optimization Theory and Applications 129(3)(2006), 457-467.         [ Links ]

[36] R. U. Verma, A fixed-point theorem involving Lipschitzian generalized pseudo- contractions, Proceedings ofthe Royal Irish Academy 97A(1)(1997), 83-86.         [ Links ]

[37] R. U. Verma, New approach to the n - proximal point algorithm and nonlinear variational inclusion problems, Applied Mathematics and Computation (in press).         [ Links ]

[38] E. Zeidler, Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, New York, 1990.         [ Links ]

Received: September 2010. Revised: November 2010.


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons