SciELO - Scientific Electronic Library Online

vol.14 issue1More on Approximate Operators author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Cubo (Temuco)

On-line version ISSN 0719-0646

Cubo vol.14 no.1 Temuco  2012 

CUBO A Mathematical Journal Vol.14, N° 01, (119-125). March 2012


Majorization for certain classes of analytic functions defined by a new operator


E. A. Eljamal and M. Darus

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 Selangor D. Ehsan, Malaysia. email: ,


In the present paper, we investigate the majorization properties for certain classes of multivalent analytic functions defined by a new operator. Moreover, we pointed out some new and known consequences of our main result.

Keywords and Phrases: Majorization properties, multivalent functions, Ruscheweyh derivative operator, Hadamard product.


En el presente artículo, investigamos las propiedades de mayorización para ciertas clases de funciones analíticas multivalentes definidas por un nuevo operador. Además, resaltamos algunas consecuencias -nuevas y conocidas- de nuestro resultado princresultado.

2010 AMS Mathematics Subject Classification:30C45.



[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci., 27(2004), 1429-1436.         [ Links ]

[2] G. Salagean, Subclasses of univalent functions, Lecture in Math. Springer Verlag, Berlin, 1013(1983), 362-372.         [ Links ]

[3] K. Al-Shaqsi and M. Darus, On univalent functions with respect to k-symmetric points defined by a generalization Ruscheweyh derivative operators, Jour. Anal. Appl., 7(2009), 53-61.         [ Links ]

[4] M. Darus and K. Al-Shaqsi, Differential Sandwich Theorems with Generalised Derivative Operator, Int. J. Comput. Math. Sci., (22)(2008), 75-78.         [ Links ]

[5] O. Altintas, Ö.Özkan and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Var. 46(2001), 207-218.         [ Links ]

[6] St. Ruscheweyh, New certain for univalent functions, Proc. Amer.Math. soc. 49(1975),109-115.         [ Links ]

[7] T. H. MacGregor, Majorization by univalent functions, Duke Math. J. 34(1967), 95-102.         [ Links ]

[8] Z. Nehari, Confformal mapping, MacGraw-Hill Book Company, New York,Toronto and London (1955).         [ Links ]

[9] M. Darus and R. W. Ibrahim, Multivalent functions based on a linear operator, Miskolc Mathematical Notes, 11(1) (2010), 43-52.         [ Links ]

[10] R. W. Ibrahim, Existence and uniqueness of holomorphic solutions for fractional Cauchy problem, J. Math. Anal. Appl., 380 (2011), 232-240        [ Links ]

Received: April 2011. Revised: June 2011.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License