SciELO - Scientific Electronic Library Online

vol.14 número2A New proof of the CR Identity and related TopicsAn Immediate Derivation of Maximum Principle in Banach spaces, Assuming Reflexive Input and State Spaces índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.14 no.2 Temuco  2012 

CUBO A Mathematical Journal Vol.14, No 02, (61-80). June 2012

Texto completo disponíble en formato PDF

Bicomplex Numbers and their Elementary Functions



*Departamento de Matemáticas, E.S.F.M del I.P.N., Mexico.

**Schmid College of Science and Technology, Chapman University, Orange California, 1 email:


In this paper we introduce the algebra of bicomplex numbers as a generalization of the field of complex numbers. We describe how to define elementary functions in such an algebra (polynomials, exponential functions, and trigonometric functions) as well as their inverse functions (roots, logarithms, inverse trigonometric functions). Our goal is to show that a function theory on bicomplex numbers is, in some sense, a better generalization of the theory of holomorphic functions of one variable, than the classical theory of holomorphic functions in two complex variables.

Keywords and Phrases: Bicomplex numbers, Elementary functions


En este artículo introducimos el algebra de números bicomplejos como una generalizacion del campo de números complejos. Describimos como definir funciones elementales en tales algebras (polinomios y funciones exponenciales y trigonometricas) así como sus funciones inversas (raíces, logaritmos, funciones trigonométricas inversas). Nuestro objetivo es mostrar que una teoría de funciones sobre numeros bicomplejos es, en cierto sentido, una mejor generalización de la teoría de funciones holomorfas de una variable compleja, que la teorúía de funciones holomorfas en dos variables complejas.

2010 AMS Mathematics Subject Classification: 30G35


[I] Ahlfors, L., Complex Analysis, McGraw Hill, New York, 1966.         [ Links ]

[2] Charak, K.S., Roohon, D., Sharma, N., Normal families of bicomplex holomorphic functions, ArXiv:0806.4403v1 (2008).         [ Links ]

[3] Fueter, R., Analytische Funktionen einer Quaternionen Variablen, Comm. Math. Helv. 4 (1932), 9-20.         [ Links ]

[4] Moisil, G., Sur les quaternions monogenes, Bull. Sci. Math. Paris 55 (2) (1931), 169-194.         [ Links ]

[5] Moisil, G., Teodorescu N., Fonctions holomorphes dans l'espace, Mathematica (Cluj) 5 (1931), 142-159.         [ Links ]

[6] Pogorui, A.A., Rodriguez-Dagnino, R.M., On the set of zeros of bicomplex polynomials, Complex Variables and Elliptic Equations. 51, 7 (2006), 725-730.         [ Links ]

[7] Price, G.B., An Introduction to Multicomplex Spaces and Functions, Monographs and Textbooks in Pure and Applied Mathematics, 140, Marcel Dekker, Inc., New York, 1991.         [ Links ]

[8] Rochon, D., Shapiro, M., On algebraic properties of bicomplex and hyperbolic numbers, An. Univ. Oradea Fasc. Mat. 11 (2004), 71-110.         [ Links ]

[9] Rochon, D., On a relation of bicomplex pseudoanalytic function theory to the complexified stationary SchrAdinger equation, Complex Var. Elliptic Equ. 53 (2008), 501-521.         [ Links ]

[10] Ryan, J., Complexified Clifford analysis, Complex Variables and Elliptic Equations 1 (1982),119-149.         [ Links ]

[11] Ryan, J., C2 extensions of analytic functions defined in the complex plane, Adv. in Applied Clifford Algebras 11 (2001), 137-145.         [ Links ]

[12] Segre, C., Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann. 40 (1892), 413-467.         [ Links ]

[13] Scorza Dragoni, G., Sulle funzioni olomorfe di una variabile bicomplessa, Reale Accad. d'Italia, Mem. Classe Sci. Nat. Fis. Mat. 5 (1934), 597-665.         [ Links ]

[14] Spampinato, N., Estensione nel campo bicomplesso di due teoremi, del Levi-Civita e del Severi, per le funzioni olomorfe di due variabili bicomplesse I, II, Reale Accad. Naz. Lincei 22 (1935), 38-43, 96-102.         [ Links ]

[15] Spampinato, N., Sulla rappresentazione di funzioni di variabile bicomplessa totalmente deriv-abili, Ann. Mat. Pura Appli. 14 (1936), 305-325.         [ Links ]

Received: May 2011. Revised: October 2011.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons