SciELO - Scientific Electronic Library Online

 
vol.15 número3Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spacesGeneralization of New Continuous Functions in Topological Spaces índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.15 no.3 Temuco  2013

http://dx.doi.org/10.4067/S0719-06462013000300005 

 

On centralizers of standard operator algebras with involution

 

Maja Fošner1, Benjamin Marcen1 and Nejc Širovnik2

1Faculty of Logistics, University of Maribor, Mariborska cesta 7 3000 Celje Slovenia, maja.fosner@fl.uni-mb.si, benjamin.marcen@fl.uni-mb.si

2Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160 2000 Maribor Slovenia. nejc.sirovnik@uni-mb.si


ABSTRACT

The purpose of this paper is to prove the following result. Let be a complex Hilbert space, let () be the algebra of all bounded linear operators on and let () () be a standard operator algebra, which is closed under the adjoint operation. Let : () () be a linear mapping satisfying the relation 2(*) = ()* + *() for all (). In this case is of the form () = λ for all (), where λ is some fixed complex number.

Keywords and Phrases: ring, ring with involution, prime ring, semiprime ring, Banach space, Hilbert space, standard operator algebra, H*-algebra, left (right) centralizer, two-sided centralizer.


RESUMEN

El propósito de este artículo es probar el siguiente resultado. Sea un espacio de Hilbert complejo, sea () el álgebra de todos los operadores lineales acotados sobre y sea () () la álgebra de operadores clásica, la cual es cerrada bajo la operación adjunto. Sea : ()() una aplicación lineal satisfaciendo la relación 2(*) = ()* + *() para todo (). En este caso, es de la forma () = λ para todo (), donde λ es un número complejo fijo.

2010 AMS Mathematics Subject Classication: 16N60, 46B99, 39B42.


 

References

[1] W. Ambrose: Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.         [ Links ]

[2] K. I. Beidar, W. S. Martindale 3rd, A. V. Mikhalev: Rings with generalized identities, Marcel Dekker, Inc., New York, (1996).         [ Links ]

[3] D. Benkovič, D. Eremita, J. Vukman: A characterization of the centroid of a prime ring, Studia Sci. Math. Hungar. 45 (3) (2008), 379-394.         [ Links ]

[4] I. Kosi-Ulbl, J. Vukman: An equation related to centralizers in semiprime rings, Glas. Mat. 38 (58) (2003), 253-261.         [ Links ]

[5] I. Kosi-Ulbl, J. Vukman: On centralizers of semiprime rings, Aequationes Math. 66 (2003), 277-283.         [ Links ]

[6] I. Kosi-Ulbl, J. Vukman: On certain equations satisfied by centralizers in rings, Internat. Math. J. 5 (2004), 437-456.         [ Links ]

[7] I. Kosi-Ulbl, J. Vukman: Centralizers on rings and algebras, Bull. Austral. Math. Soc. 71 (2005), 225-234.         [ Links ]

[8] I. Kosi-Ulbl, J. Vukman: A remark on a paper of L. Molnár, Publ. Math. Debrecen. 67 (2005), 419-421.         [ Links ]

[9] I. Kosi-Ulbl, J. Vukman: On centralizers of standard operator algebras and semisimple H*- algebras, Acta Math. Hungar. 110 (3) (2006), 217-223        [ Links ]

[10] J. Vukman: An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carol. 40 (1999), 447-456.         [ Links ]

[11] J. Vukman: Centralizers of semiprime rings, Comment. Math. Univ. Carol. 42 (2001), 237-245.         [ Links ]

[12] J. Vukman: Identities related to derivations and centralizers on standard operator algebras, Taiwan. J. Math. Vol. 11 (2007), 255-265.         [ Links ]

13 B. Zalar: On centralizers of semiprime rings, Comment. Math. Univ. Carol. 32 (1991), 609-614.


Received: April 2013 / Accepted: September 2013.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons