versión On-line ISSN 0719-0646

Cubo vol.15 no.3 Temuco  2013

http://dx.doi.org/10.4067/S0719-06462013000300005

On centralizers of standard operator algebras with involution

Maja Fošner1, Benjamin Marcen1 and Nejc Širovnik2

1Faculty of Logistics, University of Maribor, Mariborska cesta 7 3000 Celje Slovenia, maja.fosner@fl.uni-mb.si, benjamin.marcen@fl.uni-mb.si

2Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160 2000 Maribor Slovenia. nejc.sirovnik@uni-mb.si

ABSTRACT

The purpose of this paper is to prove the following result. Let be a complex Hilbert space, let () be the algebra of all bounded linear operators on and let () () be a standard operator algebra, which is closed under the adjoint operation. Let : () () be a linear mapping satisfying the relation 2(*) = ()* + *() for all (). In this case is of the form () = λ for all (), where λ is some fixed complex number.

Keywords and Phrases: ring, ring with involution, prime ring, semiprime ring, Banach space, Hilbert space, standard operator algebra, H*-algebra, left (right) centralizer, two-sided centralizer.

RESUMEN

El propósito de este artículo es probar el siguiente resultado. Sea un espacio de Hilbert complejo, sea () el álgebra de todos los operadores lineales acotados sobre y sea () () la álgebra de operadores clásica, la cual es cerrada bajo la operación adjunto. Sea : ()() una aplicación lineal satisfaciendo la relación 2(*) = ()* + *() para todo (). En este caso, es de la forma () = λ para todo (), donde λ es un número complejo fijo.

2010 AMS Mathematics Subject Classication: 16N60, 46B99, 39B42.

References

[1] W. Ambrose: Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.         [ Links ]

[2] K. I. Beidar, W. S. Martindale 3rd, A. V. Mikhalev: Rings with generalized identities, Marcel Dekker, Inc., New York, (1996).         [ Links ]

[3] D. Benkovič, D. Eremita, J. Vukman: A characterization of the centroid of a prime ring, Studia Sci. Math. Hungar. 45 (3) (2008), 379-394.         [ Links ]

[4] I. Kosi-Ulbl, J. Vukman: An equation related to centralizers in semiprime rings, Glas. Mat. 38 (58) (2003), 253-261.         [ Links ]

[5] I. Kosi-Ulbl, J. Vukman: On centralizers of semiprime rings, Aequationes Math. 66 (2003), 277-283.         [ Links ]

[6] I. Kosi-Ulbl, J. Vukman: On certain equations satisfied by centralizers in rings, Internat. Math. J. 5 (2004), 437-456.         [ Links ]

[7] I. Kosi-Ulbl, J. Vukman: Centralizers on rings and algebras, Bull. Austral. Math. Soc. 71 (2005), 225-234.         [ Links ]

[8] I. Kosi-Ulbl, J. Vukman: A remark on a paper of L. Molnár, Publ. Math. Debrecen. 67 (2005), 419-421.         [ Links ]

[9] I. Kosi-Ulbl, J. Vukman: On centralizers of standard operator algebras and semisimple H*- algebras, Acta Math. Hungar. 110 (3) (2006), 217-223        [ Links ]

[10] J. Vukman: An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carol. 40 (1999), 447-456.         [ Links ]

[11] J. Vukman: Centralizers of semiprime rings, Comment. Math. Univ. Carol. 42 (2001), 237-245.         [ Links ]

[12] J. Vukman: Identities related to derivations and centralizers on standard operator algebras, Taiwan. J. Math. Vol. 11 (2007), 255-265.         [ Links ]

13 B. Zalar: On centralizers of semiprime rings, Comment. Math. Univ. Carol. 32 (1991), 609-614.

Received: April 2013 / Accepted: September 2013.

Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons