SciELO - Scientific Electronic Library Online

 
vol.15 número3On centralizers of standard operator algebras with involutionOn quasi-conformally flat and quasi-conformally semisymmetric generalized Sasakian-space-forms índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.15 no.3 Temuco  2013

http://dx.doi.org/10.4067/S0719-06462013000300006 

 

Generalization of New Continuous Functions in Topological Spaces

 

P. G. Patil1, T. D. Rayanagoudar2 and S. S. Benchalli3

1Department of Mathematics, SKSVM Agadi College of Engg. and Techn., Laxmeshwar-582 116, Karnataka State, India. pgpatil01@gmail.com

2Department of Mathematics, Govt.First Grade College, Annigeri-582 116, Karnataka State, India. rgoudar1980@gmail.com

3Department of Mathematics, Karnatak University, Dharwad-580 003 Karnataka State, India. benchalliss@gmail.com


ABSTRACT

In this paper, ωα-closed sets and ωα-open sets are used to dene and investigate the new classes of functions namely somewhat ωα-continuous functions and totally ωα-continuous functions.

Keywords and Phrases: ωα-closed, ωα-open, ωα-continuous, somewhat ωα-continuous and totally ωα-continuous functions.


RESUMEN

En este artículo conjuntos cerrados-ωα y abiertos-ωα se usan para definir e investigar las clases de nuevas funciones continuas ωα y totalmente ontinuas ωα.

2010 AMS Mathematics Subject Classification: 54C08, 54C10.


 

References

[1] S.S.Benchalli, P.G.Patil and T.D.Rayanagoudar, ωα-Closed Sets in Topological Spaces,The Global Jl.of Appl.Math.and Math.Sciences, V.2,1-2,(2009),53-63.         [ Links ]

[2] Zdenek Frolik,, Remarks concerning the Invariance of Baire Spaces under Mappings, Czech.Math.Jl., II(86)(1961),389-385.         [ Links ]

[3] K.R. Gentry and H.B. Hoyle, Somewhat continuous functions, Czech.Math.Jl., 21, No.1 (86) (1971),5-12.         [ Links ]

[4] N. Levine, Generalized closed sets in topology, Rend. Circ . Mat. Palermo, 19 (2) (1970), 89-96        [ Links ]

[5] N. Levine, Semi-open sets and Semi- continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.         [ Links ]

[6] O.Njastad, On some classes of nearly open sets, Pacific Jl.Math., 15(1965),961-970.         [ Links ]

[7] P.G.Patil,, Some Studies in Topological Spaces, Ph.D.Thesis, Karnatak University Dharwad (2007).         [ Links ]

8 D.Santhileela and G Balasubramanian, Somewhat semi continuous and somewhat semi open functions, Bull.Cal.Math.Soc.,94(1)(2002) 41-48.         [ Links ]


Received: April 2013 / Accepted: September 2013.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons