SciELO - Scientific Electronic Library Online

 
vol.15 número3Convergence theorems for generalized asymptotically quasi-nonexpansive mappings in cone metric spacesEuler’s constant, new classes of sequences and estimates índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.15 no.3 Temuco  2013

http://dx.doi.org/10.4067/S0719-06462013000300009 

 

Approximate solution of fractional integro-differential equation by Taylor expansion and Legendre wavelets methods

 

M.H. Saleh, S.M. Amer, M.A. Mohamed and N.S. Abdelrhman

Mathematics Department, Faculty of Science, Suez canal University, Egypt Ismailia,. nsae191088@yahoo.com


ABSTRACT

This paper, deals with the approximate solution of fractional integro-differential equations of the type

t I = [0,1]

by Taylor expansion and Legendre wavelet methods.In addition, illustrative example are presented to demonstrate the efficiency and accuracy of this methods.

Keywords and Phrases: Fractional integro-differential equation, Caputo fractional derivative, Taylor expansion method, Legendre wavelets method.


RESUMEN

Este artículo considera la solución aproximada de ecuaciones integro-diferenciales fraccionales del tipo

t I = [0,1]

por expansiones de Taylor y métodos de Ondeletas de Legendre. Además, un ejemplo ilustrativo se presenta para mostrar la eficiencia y precisión de este método.

2010 AMS Mathematics Subject Classication: 45B05 , 45Bxx , 65R10.


 

References

[1] A. Arikoglu and I. ozkol ; Solution of Fractional Integro-Differential Equation by Using Fractional Differential Transform method , Chaos Solitons and Fractals 40 (2009) , 521 - 529        [ Links ]

[2] D. Elliott ; An Asymptotic Analysis of Two Algorithms for Certain Hadamard Finite Part Integrals, IMA J. Numer . Anal . 13 (1993) , 445-462.         [ Links ]

[3] E.A. Rawashdeh ; Numerical Solution of Fractional Integro-Differential Equations by Collocation Method , Applied Mathematics and Computation , 176 (2006) , 1-6.         [ Links ]

[4] E. A . Rawashdeh ; Legendre Wavelets Method for Fractional Integro-Differential Equations, Dhofar University, 2011.         [ Links ]

[5] I.Podlubny ; Fractional Differential Equations , Academic Press , San Diego , 1999.         [ Links ]

[6] K.Diethelm ; An Algorithm for The Numerical Solution of Differential Equations of Fractional Order ,Electronic Trans .Num . Ana . 5(1997), 1-6        [ Links ]

[7] K.Miller, B.Ross ; An Introduction to the Fractional Calculus and Fractional Differential , Wiley , New York. 1993        [ Links ]

[8] Li Huang , Xian-Fang Li , Yulin Zhao and Xian-Yang Duan ; Approximate Solution of Fractional Integro-Differential Equations by Taylor Expansion Method. Hunan University ,62 (2011) , 1127-1134        [ Links ]

[9] M. T . Rashed ; Numerical Solution of A Special Type of Integro-Differential Equations, Appl. Math . Compute . 143 (2003) 73-88 .         [ Links ]

[10] S. G . Samko , A.A . Kilbas and O . I . Marichev ; Fractional Integrals and Derivatives , Gordan and Breach Science Publishers , Yverdon and New York , 1993 .         [ Links ]

[11] S. Momani and R.Qaralleh ; An Efficient Method for Solving System of Fractional Integro-Differential Equation , Computers Mathmatics with Applications 52(2006) , 459-470 .         [ Links ]

12 S.S.Ray , R.K.Bera ; Analytical Solution of The Bagley Torvik Equation by Adomain Decomposition Method ,Appl . Math . comput . 168(2005) 398-410.         [ Links ]


Received: March 2013 / Accepted: September 2013.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons