SciELO - Scientific Electronic Library Online

 
vol.19 número2On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.19 no.2 Temuco jun. 2017

http://dx.doi.org/10.4067/S0719-06462017000200001 

Articles

On Some Recurrent Properties of Three Dimensional 𝒦-Contact Manifolds

 Venkatesha1 

R.T. Naveen Kumar1 

1 Kuvempu University, Department of Mathematics, Shankaraghatta - 577 451, Shimoga, Karnataka, India. e-mail: vensmath@gmail.com, rtnaveenkumar@gmail.com

Abstract

In this paper we characterize some recurrent properties of three dimensional 𝒦-contact manifolds. Here we study Ricci η-recurrent, semi-generalized recurrent and locally generalized concircularly ϕ-recurrent conditions on three dimensional 𝒦-contact manifolds.

Keywords and Phrases: 𝒦-contact manifold; Ricci η-recurrent; semi-generalized recurrent; locally generalized concircularly ϕ-recurrent; scalar curvature; Einstein manifold.

Resumen

En este paper caracterizamos algunas propiedades recurrentes de variedades $K$-contacto tridimensionales. Estudiamos las condiciones de Ricci η-recurrencia, recurrencia semi-generalizada y ϕ-recurrencia concircular localmente generalizada en variedades $K$-contacto tridimensionales.

2010 AMS Mathematics Subject Classification: 53C25, 53D15.

References

[1] Archana Singh, J.P. Singh and Rajesh Kumar,On a type of semi generalized recurrent P-Sasakian manifolds, FACTA UNIVERSITATIS, Ser. Math. Inform, 31 (1), (2016), 213-225. [ Links ]

[2] D.E. Blair, Contact manifolds in Riemannian geometry. Lecture Notes in Math., No. 509, Springer, 1976. [ Links ]

[3] U.C. De and N. Guha, On generalized recurrent manifold, J. Nat. Acad. Math., 9 (1991), 85-92. [ Links ]

[4] U.C. De and Avik De, On some Curvature Properties of 𝒦-contact Manifolds, Extracta Mathematicae, 27 (1), (2012), 125-134. [ Links ]

[5] J.B. Jun and U.K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J., 34 (2), (1994), 293-301. [ Links ]

[6] Q. Khan, On generalized recurrent Sasakian manifolds, Kyungpook Math. J., 44 (2004),167-172. [ Links ]

[7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, Vol. 1, (1963), p. 202. [ Links ]

[8] E. Peyghan, H. Nasrabadi and A. Tayebi, On ϕ-recurrent contact metric manifolds, Math. J. Okayama Univ., 57 (2015), 149-158. [ Links ]

[9] K.T. Pradeep Kumar , C.S. Bagewadi and Venkatesha, Projective ϕ symmetric 𝒦-contact manifold admitting quarter-symmetric metric connection, Differential Geometry-Dynamical Systems, 13, (2011), 128-137. [ Links ]

[10] B. Prasad, On semi-generalized recurrent manifold, Mathematica Balkanica, New series, 14 (2000), 77-82. [ Links ]

[11] H.S. Ruse, A Classification of 𝒦4 space , London Mathematical Society, 53 (1951), 212-229. [ Links ]

[12] A.A. Shaikh and H. Ahmed, On generalized ϕ-recurrent Sasakian manifolds, Applied mathematics, 2, (2011), 1317-1322. [ Links ]

[13] S. Sasaki, Lecture Note on almost Contact Manifolds, Tohoku University, Tohoku, Japan, 1965. [ Links ]

[14] D. Tarafdar and U.C. De, On 𝒦-contact manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 37 ( 85) , (3-4), (1993), 207-215. [ Links ]

[15] M.M. Tripathi and M.K. Dwivedi, The structure of some classes of 𝒦-contact manifolds, Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 118 (3), (2008), 371-379. [ Links ]

[16] S. Tanno, Locally symmetric 𝒦-contact Riemannian manifolds, Proc. Japan Acad., 43, 581 (1967). [ Links ]

[17] A.G. Walker, On Ruse’s Spaces of Recurrent curvature, Proc. London Math. Soc., 52 (1976), 36-64. [ Links ]

[18] K. Yano and M. Kon, Structures on Manifolds ,Vol. 3 of Series in Pure Mathematics, World Scientific Publishing Co., Singapore, (1984). [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License