SciELO - Scientific Electronic Library Online

vol.19 número2On Some Recurrent Properties of Three Dimensional 𝒦-Contact ManifoldsSome geometric properties of η Ricci solitons and gradient Ricci solitons on (lcs) n -manifolds índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.19 no.2 Temuco jun. 2017 


On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup

Iris A. López1 

1 Universidad Simón Bolivar, Departamento de Matemáticas Puras y Aplicadas, Aptdo 89000. Caracas 1080-A. Venezuela. e-mail:


The aim of this paper is to prove the hypercontractive propertie of the Dunkl-Ornstein-Uhlenbeck semigroup, . To this end, we prove that the Dunkl-Ornstein-Uhlenbeck differential operator Lk with k ≥ 0 and associated to the group, satisfies a curvature-dimension inequality, to be precise, a C(ρ, ∞)-inequality, with 0≤ρ≤1. As an application of this fact, we get a version of Meyer's multipliers theorem and by means of this theorem and fractional derivatives, we obtain a characterization of Dunkl-potential spaces.

Keywords and Phrases: Dunkl-Ornstein-Uhlenbeck operator; generalized Hermite polynomial; squared field operator; Meyer's multiplier theorem; Dunkl-potential space; fractional integral; fractional derivative.


El objetivo de este artículo es demostrar la propiedad hipercontractiva del semigrupo de Dunkl-Ornstein-Uhlenbeck, .. Para lograr esto, probamos que el operador diferencial de Dunkl-Ornstein-Uhlenbeck Lk con k ≥ 0 y asociado al grupo , satisface una desigualdad de curvatura-dimensión, para ser precisos, una C(ρ,∞)-desigualdad, con 0≤ρ≤1. Como una aplicación de este hecho, obtenemos una versión del teorema de multiplicadores de Meyer y a través de este teorema y derivadas fraccionales, obtenemos una caracterización de espacios Dunkl-potenciales.

2010 AMS Mathematics Subject Classification: 33C45, 6A33, 33C52.


[1] D. Bakry, M. Emery, Hypercontractivité de semi-groupes de diffusion, C.R Acad. Sci. Paris Sér, 299, (15), 775-778, (1984). [ Links ]

[2] D. Bakry, On Sobolev and Logarithmic Sobolev inequalities for Markov semigroups, in: New Trends in stochastic analysis (Charingworth), 43-75, (1994). River Edge N.J 1997. Taniguchi-Symposium World. Sci. Publishing. [ Links ]

[3] D. Bakry, Functional inequalities for Markov semigroups, Probability measures on groups: Recent directions and trends, Tata Institute of Fundamental Research, Mumbai, 91-147, (2006). [ Links ]

[4] T.S Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, (1978). [ Links ]

[5] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc, 311, 167-183, (1989). [ Links ]

[6] P. Graczky, J. Loeb, I. López, A. Nowak, W. Urbina, Higher order Riesz transforms, fractional derivatives and Sobolev spaces for Laguerre expansions, J. Math. Pures et Appl, 84, 375-405, (2005). [ Links ]

[7] L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, in: Dirichlet forms (Varenna, 1992) Springer, Verling, 54-88, (1993). [ Links ]

[8] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97, 1061-1083, (1976). [ Links ]

[9] I. López, W. Urbina, Fractional differentiation for the Gaussian measure and applications, Bull. Sci. Math, Vol 128, Issue 7, 587-603, (2004). [ Links ]

[10] I. López, Operators associated with the Jacobi semigroup, J. Approx. Theory, 161, 385-410, (2009). [ Links ]

[11] M. Rösler, Generalize Hermite polynomials and the heat equation for Dunkl operators, Commun. Math. Phys. 192, 519-542, (1998). [ Links ]

[12] M. Rösler, M. Voit Markov processes related with Dunkl operators, Adv. in Appl. Math, 21, 575-643, (1998). [ Links ]

[13] M. Rösler Dunkl operators. Theory and applications, Orthogonal polynomials and special functions, (Leuven 2002), 93-135. Lecture Notes in Math. 1817, Springer-Berlin, (2003). [ Links ]

[14] M. Rösler, M. Voit , Dunkl theory, convolution algebras and related Markov processes, in: Harmonic and stochastic analysis of Dunkl processes, eds. P. Graczyk, M. Rösler, M. Yor, Travaux en cours 71, 1-112, Hermann, Paris, (2008). [ Links ]

[15] E. Stein, The Characterization of Functions Arising as Potentials I, Bull. Amer. Math. Soc. 97, 102-104, (1961). II (ibid) 68, 577-582, (1962). [ Links ]

[16] E. Stein, Topics in Harmonic Analysis related to the Littlewood-Paley Theory, Princenton Univ. Press. Princenton (1971). [ Links ]

[17] H. Sugita, Sobolev spaces of Wiener functionals and Malliavin's calculus, J. Math. Kyoto Univ, 25-1, 31-48, (1985). [ Links ]

[18] S. Watanabe, M. Gopalan Nair, B. Rajeev Lectures on Stochastic differential equations and Malliavin Calculus, Tata Institute of Fundamental Research, Vol. 73, Springer Verlag, Berlin/Heidelberg/New York/Tokyo, (1984). [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License