SciELO - Scientific Electronic Library Online

 
vol.19 número2On topological symplectic dynamical systems índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.19 no.2 Temuco jun. 2017

http://dx.doi.org/10.4067/S0719-06462017000200073 

Articles

A Trigonometrical Approach to Morley's Observation

Ioannis Gasteratos1 

Spiridon Kuruklis2 

Thedore Kuruklis3 

1 Boston University, Department of Mathematics and Statistics, Boston, MA 02215, USA. e-mail: igaster@bu.edu

2 Eurobank, Group Information and IT Security, 14234 Athens, Greece. e-mail: skuruklis@gmail.com

3 Theoklitos, 17672 Kallithea, Greece. e-mail: tkuruklis@gmail.com

Abstract:

Simple trigonometrical arguments verify that in a triangle the trisectors, proximal to sides respectively, meet at the vertices of an equilateral triangle by showing that the length of each side is 8R times the sines of the angles between the sides of the triangle and the trisectors that determine it, where R is the radius of the circumcircle of the triangle. The 27 meeting points of the trisectors, proximal to a side, determine 18 such equilaterals, which in pairs share a vertex having two collinear sides and the third parallel. Hence these points are located 6 by 6 on three triples of parallel lines.

Keywords and Phrases: Angle trisection;, proximal trisector; triangle trisectors; Morley's theorem; Morley triangle; Morley's magic; Morley's miracle; Morley's mystery

Resumen:

Argumentos trigonométricos simples verifican que en un triángulo los trisectores, próximos a los lados respectivamente, se encuentran en los vértices de un triángulo equilátero mostrando que la longitud de cada lado es 8R veces los senos de los ángulos entre los lados del triángulo y los trisectores que lo determinan, donde R es el radio del circuncírculo del triángulo. Los 27 puntos de encuentro de los trisectores, próximos a un lado, determinan 18 tales equiláteros, que a pares comparten un vértice teniendo dos lados colineales y el tercero paralelo. Luego estos puntos están ubicados 6 por 6 en tres triples de líneas paralelas.

2010 AMS Mathematics Subject Classification: 00A05, 00A08

References:

[1] Paul and Jack Abad, The Hundred Greatest Theorems, in Actes de la conférence JFLA 2008. [ Links ]

[2] B. Bollobás, The Art of Mathematics, Cambridge University Press, (2006), 126-127. [ Links ]

[3] Alain Connes, A new proof of Morley's theorem, Publications Mathmatiques de l' IHÉS, (1998), 43-46. [ Links ]

[4] John Conway, The power of mathematics, In Power, Cambridge University Press, (2006), 36-50. [ Links ]

[5] John Conway, On Morley's Trisector Theorem, The Mathematical Intelligencer, 36, no. 3(2014), 3-3 [ Links ]

[6] Edsger W. Dijkstra, A Collection of Beautiful Proofs, Selected Writings on Computing: A personal Perspective, Springer, (1982), 174-183. [ Links ]

[7] Edsger W. Dijkstra, On the design of a simple proof for Morley's Theorem, Programming and Mathematical Method, Volume 88 of the NATO ASI Series, Springer (1992) 3-9. [ Links ]

[8] W. J. Dobbs, Morley's triangle, The Mathematical Gazette, 1938 JSTOR. [ Links ]

[9] Richard K. Guy, The Lighthouse Theorem A Budget of Paradoxes, Amer. Math. Monthly, 114 (2007), 97-141 [ Links ]

[10] Clark Kimberling, Central points and central lines in the plane of a triangle, Mathematics Magazine, 67 (1994), 163-187. [ Links ]

[11] Spiridon A. Kuruklis, Trisectors like Bisectors with Equilaterals instead of Points, CUBO 16, 2 (2014), 71-110. [ Links ]

[12] Henri Lebesgue, Sur les n-sectrices d'un triangle En memoire de Frank Morley (1860-1930) , Enseingnement Math., 38 (1940), 39-58. [ Links ]

[13] Frank Morley, Extensions of Clifford's Chain-Theorem, American J. of Math., 51 (1929), 465-472. [ Links ]

[14] Roger Penrose, Morley's trisector theorem, Eureka The Archimedeans’ Journal, Cambridge, 16 (1953), 6-7. [ Links ]

[15] David Wells, Are These The Most Beautiful? The Mathematical Intelligencer, 12 (1990), 37-41. [ Links ]

[16] Glanville F. Taylor and L.W. Marr, The six trisectors of each of the angles of a triangle, Proceedings of the Edinburgh Mathematical Society 33 (1913-14), 119-131. [ Links ]

[17] Alexander Bogomolny, Morley's Miracle, Interactive Mathematics Miscellany and Puzzles, http://www.cut-the-knot.org/triangle/Morley/Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License