SciELO - Scientific Electronic Library Online

 
vol.19 número3On the solution set of a fractional integro-differential inclusion involving Caputo-Katugampola derivativeExistence of solutions for discrete boundary value problems with second order dependence on parameters índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.19 no.3 Temuco dic. 2017

http://dx.doi.org/10.4067/S0719-06462017000300043 

Articles

Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponents

Aboudramane Guiro1 

Idrissa Ibrango2 

Stanislas Ouaro3 

1Laboratoire de Mathématiques et Informatique (LAMI) UFR. Sciences et Techniques, Universit Nazi BONI 01 BP 1091 Bobo-Dioulasso, 01 Bobo Dioulasso, Burkina Faso. E-mail: abouguiro@yahoo.fr

2Laboratoire de Mathématiques et Informatique (LAMI) UFR. Sciences et Techniques, Universit Nazi BONI 01 BP 1091 Bobo-Dioulasso, 01 Bobo Dioulasso, Burkina Faso. E-mail: ibrango2006@yahoo.fr

3Laboratoire de Mathématiques et Informatique (LAMI) UFR. Sciences Exactes et Appliquées Université de Ouagadougou, 03 BP 7021 Ouaga 03 Ouagadougou, Burkina Faso. E-mail: ouaro@yahoo.fr

Abstract

In this paper, we prove the existence of weak homoclinic solutions for discrete nonlinear problems of Kirchhoff type. The proof of the main result is based on a minimization method. As extension, we prove the existence result of weak homoclinic solutions for more general data depending on the solutions.

Resumen

En este artículo, probamos la existencia de soluciones homoclínicas débiles para problemas discretos no-lineales de tipo Kirchhoff. La demostración del resultado principal está basado en un método de minimización. Como extensión, probamos la existencia de soluciones homoclínicas débiles para datos más generales dependiendo de las soluciones.

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

References

[1] H. Brezis; Analyse Fonctionnelle: Theorie et Applications. Paris, Masson, 1983. [ Links ]

[2] A. Cabada, C. Li, S. Tersian; On homoclinic solutions of a semilinear p-Laplacian difference equation with periodic coefficients. Adv. Difference Equ. 2010, Art. ID 195376, 17 pp. [ Links ]

[3] A. Guiro, B. Kon and S. Ouaro; Weak homoclinic solutions of anisotropic difference equation with variable exponents. Adv. Difference Equ. 154 (2013), 13 pp. [ Links ]

[4] A. Guiro, B. Kon and S. Ouaro; Weak heteroclinic solutions of anisotropic difference equation with variable exponents. Electron. J. Diff. Equ. 225 (2013), 1-9. [ Links ]

[5] B. Kon and S. Ouaro; Weak solutions for anisotropic discrete boundary value problems. J. Difference Equ. Appl. 17, N.10, (2011), 1537-1547. [ Links ]

[6] B. Kon, S. Ouaro and S. Traor; Weak solutions for anisotropic nonlinear elliptic equations with variable exponent. Electron. J. Diff. Equ. 144 (2009), 1-11. [ Links ]

[7] M. Mihailescu, P. Pucci and V. Radulescu; Nonhomogeneous boundary value problems in anisotropic Sobolev spaces. C. R. Acad. Sci. Paris, Ser. I 345 (2007), 561-566. [ Links ]

[8] M. Mihailescu, P. Pucci and V. Radulescu; Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340 (2008), 687-698. [ Links ]

[9] M. Mihailescu, V. Radulescu and S. Tersian; Eigenvalue problems for anisotropic discrete boundary value problems. J. Difference Equ. Appl. 15(6) (2009), 557-567. [ Links ]

[10] M. Mihailescu, V. Radulescu and S. Tersian; Homoclinic solutions of difference equations with variable exponents. Topol. Methods Nonlinear Anal. 38 (2011) 2, 277-289. [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License