SciELO - Scientific Electronic Library Online

vol.22 issue1Bounds for the Generalized (Φ, f)-Mean DifferenceA sufficiently complicated noded Schottky group of rank three author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Cubo (Temuco)

On-line version ISSN 0719-0646

Cubo vol.22 no.1 Temuco Apr. 2020 


η-Ricci Solitons on 3-dimensional Trans-Sasakian Manifolds

Sampa Pahan1 

1Department of Mathematics, Mrinalini Datta Mahavidyapith Kolkata-700051, India.


In this paper, we study η-Ricci solitons on 3-dimensional trans-Sasakian manifolds. Firstly we give conditions for the existence of these geometric structures and then observe that they provide examples of η-Einstein manifolds. In the case of φ-Ricci symmetric trans-Sasakian manifolds, the η-Ricci soliton condition turns them to Einstein manifolds. Afterward, we study the implications in this geometric context of the important tensorial conditions R · S = 0, S · R = 0, W2 · S = 0 and S · W2 = 0.

Keywords and Phrases: Trans-Sasakian manifold; η-Ricci solitons.


En este artículo estudiamos solitones η-Ricci en variedades trans-Sasakianas tridimensionales. En primer lugar damos condiciones para la existencia de estas estructuras geométricas y luego observamos que ellas dan ejemplos de variedades η-Einstein. En el caso de variedades trans-Sasakianas φ-Ricci simétricas, la condición de solitón η-Ricci las convierte en variedades Einstein. A continuación estudiamos las implicancias en este contexto geométrico de las importantes condiciones tensoriales R · S = 0, S · R = 0, W2 · S = 0 y S · W2 = 0.

Texto completo disponible sólo en PDF.

Full text available only in PDF format.


The author wish to express her sincere thanks and gratitude to the referee for valuable suggestions towards the improvement of the paper.


[1] C. S. Bagewadi, G. Ingalahalli, S. R. Ashoka, A stuy on Ricci solitons in Kenmotsu Manifolds, ISRN Geometry, (2013), Article ID 412593, 6 pages. [ Links ]

[2] A. Bhattacharyya, T. Dutta, and S. Pahan, Ricci Soliton, Conformal Ricci Soliton And Torqued Vector Fields, Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics, Vol 10(59), No. 1 (2017), 39-52. [ Links ]

[3] A. M. Blaga, Eta-Ricci solitons on para-Kenmotsu manifolds, Balkan Journal of Geometry and Its Applications, Vol.20, No.1, 2015, pp. 1-13. [ Links ]

[4] C. Călin , M. Crasmareanu, Eta-Ricci solitons on Hopf hypersurfaces in complex forms, Revue Roumaine de Math. Pures et app., 57 (1), (2012), 53-63. [ Links ]

[5] B. Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan Journal of Geometry and Its Applications, Vol.19, No.1, 2014, pp. 13-21 [ Links ]

[6] J.C. Cho, M. Kimura Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2), (2009), 205-2012. [ Links ]

[7] O. Chodosh, F. T.-H Fong, Rational symmetry of conical Kähler-Ricci solitons, Math. Ann., 364(2016), 777-792. [ Links ]

[8] A. Futaki, H. Ono, G. Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Diff. Geom. 83 (3), (2009), 585-636. [ Links ]

[9] S. Golab, On semi-symmetric and quarter-symmetric linear connection, Tensor. N. S., 29(1975), 249-254. [ Links ]

[10] R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential Geometry ( Cambridge, MA, 1993), 2, 7-136, International Press, Combridge, MA, 1995. [ Links ]

[11] R. S. Hamilton, The Ricci flow on surfaces, Mathematical and general relativity, Contemp. math, 71(1988), 237-261. [ Links ]

[12] G. Ingalahalli , C. S. Bagewadi, Ricci solitons on α-Sasakian Manifolds, ISRN Geometry , (2012), Article ID 421384, 13 pages. [ Links ]

[13] J. C. Marrero ,The local structure of trans-Sasakian manifolds, Ann. Mat. Pura. Appl., (4), 162(1992), 77-86. [ Links ]

[14] J. Morgan, G. Tian, Ricci Flow and the Poincáre Conjecture, American Mathematical Society Clay Mathematics Institute, (2007). [ Links ]

[15] J. A. Oubina, New classes of almost contact metric structures, pub. Math. Debrecen, 20 (1), (2015), 1-13. [ Links ]

[16] G. P. Pokhariyal, R. S. Mishra, The curvature tensors and their relativistic significance, Yokohama Math. J., 18(1970), 105-106. [ Links ]

[17] D. G. Prakasha, B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, Journal of Geometry, (2016), DOI: 10.1007/s00022-016-0345-z, pp 1-10. [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License