SciELO - Scientific Electronic Library Online

 
vol.22 issue1Certain results on the conharmonic curvature tensor of (κ, μ)-contact metric manifoldsOn Katugampola fractional order derivatives and Darboux problem for differential equations author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Cubo (Temuco)

On-line version ISSN 0719-0646

Cubo vol.22 no.1 Temuco Apr. 2020

http://dx.doi.org/10.4067/S0719-06462020000100085 

Articles

Nonlinear elliptic p(u)− Laplacian problem with Fourier boundary condition

Stanislas Ouaro1 

Noufou Sawadogo2 

1 UFR. Sciences Exactes et Appliquées Université Joseph KI ZERBO, LAboratoire de Mathématiques et Informatique (LA.M.I) 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso. ouaro@yahoo.fr

2 UFR. Sciences et Techniques, Université Nazi Boni, LAboratoire de Mathématiques et Informatique (LA.M.I), 01 BP 1091 Bobo 01, Bobo-Dioulasso, Burkina Faso. noufousawadogo858@yahoo.fr

Abstract

We study a nonlinear elliptic p(u)− Laplacian problem with Fourier boundary conditions and L1− data. The existence and uniqueness results of entropy solutions are established.

Keywords and Phrases: variable exponent; p(u)−Laplacian; Young measure; Fourier boundary condition, entropy solution

Resumen

Estudiamos un problema p(u)−Laplaciano elíptico nolineal con condiciones de borde Fourier y datos L1. Se establecen resultados de existencia y unicidad de soluciones de entropía.

Texto completo disponible sólo en PDF

Full text available only in PDF format.

References

[1] B. Andreianov, M. Bendahmane, S. Ouaro; Structural stability for variable exponent elliptic problems. I. The p(x)-Laplacian kind problems, Nonlinear Analysis, 73 (2010), 2 − 24. [ Links ]

[2] B. Andreianov , M. Bendahmane , S. Ouaro ; Structural stability for variable exponent elliptic problems, II: The p(u)-Laplacian and coupled problems, Nonlinear Analysis , 72 (2010), 4649 − 4660. [ Links ]

[3] B. Andreianov , F. Bouhsiss; Uniqueness for an elliptic parabolic problem with Neumann boundary condition, J. Evol. Equ. 4 (2) (2004) 273-295. [ Links ]

[4] F. Andreu, N. Igbida, J.M. Mazón, J. Toledo; L1 existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions, Ann. Inst. Henri Poincar 24 (2007), 61 − 89. [ Links ]

[5] F. Andreu , J.M. Mazón , S. Segura de León, J. Toledo ; Quasi-linear elliptic and parabolic equations in L1 with nonlinear boundary conditions, Adv. Math. Sci. Appl. 7, No. 1 (1997), 183 − 213. [ Links ]

[6] S.N. Antontsev , J.F. Rodrigues ; On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (1) (2006), 19 − 36. [ Links ]

[7] J.M. Ball; A version of the fundamental theorem for Young measures . PDEs and continum models of phase transitions (Nice, 1988), 207−215, Lecture Notes in Phys., 344, Springer, 1989. [ Links ]

[8] M.B. Benboubker, S. Ouaro , U. Traor; Entropy solutions for nonhomogeneous Neumann problems involving the generalized p(x)-laplacian operators and measure data, Nonlinear Evolution Equation and Application. Volume 2014, Number 5, pp. 53 − 76. [ Links ]

[9] Y. Chen, S. Levine, M. Rao; Variable exponent, linear growth functionals in image restoration. SIAM. J.Appl. Math., 66 (2006), 1383 − 1406. [ Links ]

[10] G. Dolzmann, N. Hungerbhler, S. Mller; The p-harmonic system with measure-valued right hand side, Ann. Inst. H. Poincar. Anal. Non Linaire 14 (3) (1997), 353 − 364. [ Links ]

[11] R. Eymard, T. Galloet and R. Herbin; Finite volume methods. Handbook of numerical analysis, Vol. VII, 713 − 1020, North-Holland, 2000. [ Links ]

[12] N. Hungerbhler ; Quasi-linear parabolic systems in divergence form with weak monotonicity, Duke Math. J. 107 (3) (2001), 497 − 520. [ Links ]

[13] N. Hungerbhler ; A refinement of Ball’s theorem on Young measures. New York J. Math. 3 (1997), 48 − 53. [ Links ]

[14] I. Ibrango, S. Ouaro ; Entropy solution for doubly nonlinear elliptic anisotropic problems with Fourier boundary conditions, Differential Inlusions, Control and Optimization, vol 35 (2015), 123 − 150. [ Links ]

[15] I. Nyanquini, S. Ouaro ; Entropy solution for nonlinear elliptic problem involving variable exponent and Fourier type boundary condition, Afr. Mat. 23, No. 2, 205 − 228 (2012). [ Links ]

[16] V. K. Le, On sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces. Nonlinear Anal. 71 (2009), 3305 − 3321. [ Links ]

[17] J.-L. Lions; Quelques mthodes de rsolution de problmes aux limites nonlinaires, Dunod. Gauthier-Villars, Paris, 1969. [ Links ]

[18] S. Ouaro , A Tchousso; Well-posedness result for a nonlinear elliptic problem involving variable exponent and Robin type boundary condition, African Diaspora Journal of Mathematics 11, No. 2, 36 − 64 (2011). [ Links ]

[19] P. Pedregal; Parametrized measures and variational principles. Progress in Nonlinear Differential Equations and their Applications, 30. Birkhäuser, Basel, 1997. [ Links ]

[20] M. Ruzicka; Electrorheological fluids: modelling and mathematical theory. Lecture Notes in Mathematics 1748, Springer-Verlag, Berlin, 2002. [ Links ]

[21] M. Sanchón, J. M. Urbano; Entropy solutions for the p(x)-Laplace Equation, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6387 − 6405. [ Links ]

[22] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical surveys and monographs, 49, American Mathematical Society. [ Links ]

[23] L. Wang, Y. Fan, W. Ge; Existence and multiplicity of solutions for a Neumann problema involving the p(x)−Laplace operator . Nonlinear Anal. 71 (2009), 4259 − 4270. [ Links ]

[24] J. Yao; Solutions for Neumann boundary value problems involving p(x)-Laplace operator. Nonlinear Anal: (TMA) 68(2008), 1271 − 1283. [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License