SciELO - Scientific Electronic Library Online

 
vol.22 issue1Nonlinear elliptic p(u)− Laplacian problem with Fourier boundary conditionLevel sets regularization with application to optimization problems author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Cubo (Temuco)

On-line version ISSN 0719-0646

Cubo vol.22 no.1 Temuco Apr. 2020

http://dx.doi.org/10.4067/S0719-06462020000100125 

Articles

On Katugampola fractional order derivatives and Darboux problem for differential equations

Djalal Boucenna1 

Abdellatif Ben Makhlouf2 

Mohamed Ali Hammami3 

1 Laboratory of Advanced Materials, Faculty of Sciences, Badji Mokhtar-Annaba University, P.O. Box 12, Annaba, 23000, Algeria.

2 Department of Mathematics, College of Science, Jouf University, Aljouf, Saudi ArabiaDepartment of Mathematics, Faculty of Sciences of Sfax, Route Soukra, BP 1171, 3000 Sfax, Tunisia benmakhloufabdellatif@gmail.com

3 Department of Mathematics, Faculty of Sciences of Sfax, Route Soukra, BP 1171, 3000 Sfax, Tunisia

Abstract

In this paper, we investigate the existence and uniqueness of solutions for the Darboux problem of partial differential equations with Caputo-Katugampola fractional derivative.

Keywords and Phrases: Darboux problema; Fractional differential equations; Caputo-Katugampola derivative

Resumen

En este artículo investigamos la existencia y unicidad de soluciones para el problema de Darboux de ecuaciones diferenciales parciales con derivada fraccional de Caputo-Katugampola.

Texto completo disponible sólo en PDF

Full text available only in PDF format.

References

[1] H . J. Haubold, A. M. Mathai, and R. K. Saxena, Mittag-Leffler Functions and Their Applications, Jour of App Math Volume 2011, Article ID 298628 , 51pages. [ Links ]

[2] Almeida, R., Malinowska, A. B., Odzijewicz, T., “Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative,” J. Comput. Nonlinear Dynam, Vol. 11, pp. 061017 (2016). [ Links ]

[3] Katugampola, U. N., “ Existence and uniqueness results for a class of generalized fractional differential equations, preprint arXiv: 1411.5229. [ Links ]

[4] Katugampola, U. N., “A new approach to generalized fractional derivatives,”Bull. Math. Anal. Appl., Vol. 6, pp. 1-15 (2014). [ Links ]

[5] Hilfer, R., “ Applications of Fractional Calculus in Physics, ”World Scientific, Singapore (2000). [ Links ]

[6] Tarasov, V. E., “ Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media ”Springer, Heidelberg; Higher Education Press, Beijing (2010). [ Links ]

[7] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., “ Theory and Applications of Fractional Differential Equations ”Elsevier Science B.V., Amsterdam (2006). [ Links ]

[8] Miller, K. S., Ross, B., “ An Introduction to the Fractional Calculus and Differential Equations ”John Wiley, New York (1993). [ Links ]

[9] Bai, Y., Kong, H., “Existence of solutions for nonlinear Caputo-Hadamard fractional differential equations via the method of upper and lower solutions,”J. Nonlinear Sci. Appl., Vol. 10, pp. 5744-5752 (2017). [ Links ]

[10] Guo, T. L., Zhang, K., “Impulsive fractional partial differential equations,”Applied Mathematics and Computation, Vol. 257, pp. 581-590 (2015). [ Links ]

[11] Zhang, X., “On impulsive partial differential equations with Caputo-Hadamard fractional derivatives,”Advances in Difference Equations, Vol. 2016, pp. 281 (2016). [ Links ]

[12] Cernea, A., “On the Solutions of a Class of Fractional Hyperbolic Integro-Differential Inclusions,”International Journal of Analysis and Applications, Vol. 17, pp. 904-916 (2019). [ Links ]

[13] Erdélyi, A. and Kober, H., “Some remarks on Hankel transforms,” Q. J. Math., Vol. 11, pp. 212-221 (1940). [ Links ]

[14] Katugampola, U. N., “A new approach to generalized fractional derivative,”Bull. Math. Anal. Appl., Vol. 6, pp. 1-15 (2014) [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License